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Abstract

This thesis covers work on three basic concepts in population genetics: relatedness, admixture, and
linkage disequilibrium, and contains both new statistical methods as well as application of recently
published methods to better understand the recent human past in Greenland.

The first manuscript included in this thesis addresses a gap in the availability of methods to infer rela-
tedness with limited data. Relatedness matters for all aspects of population genetics, but most methods
to infer relatedness rely on the availability of population allele frequencies and accurate genotype data.
We present a method that can infer close familial relationships without relying on estimates of popula-
tion allele frequencies, and directly from low-depth (4x) sequencing data without genotype calling. It
requires genetic data from only two individuals and has the potential to expand the number of studies
able to infer relatedness despite limited data.

In the second manuscript we examine the history of contact between the Greenlandic Inuit and Eu-
ropeans from a genetic perspective. The current population of Greenland has experienced substantial
gene flow from Europe, but the European source countries of this ancestry was genetically unknown.
There is a tight historical relationship between Greenland and Denmark, but there is also a history of
Dano–Norwegian and German missionaries, Dutch whalers, as well as other European contact with
Greenland. Using dense SNP array data from Greenlanders and Europeans we identify Denmark as
the primary source of European ancestry in Greenland, and quantify the ancestry contribution from
14 different European countries. We discuss in detail how these results reflect the history of Green-
land/European contact.

In the third and last manuscript we present a software tool for estimating linkage disequilibrium (LD)
in admixed populations. The LD in a population is affected by many aspects of the population’s history,
including effective population size and past admixture. LDadmix estimates the two-locus haplotype
frequencies within the source ancestries of a recently admixed population. These two-locus haplotype
frequencies reflect the LD within each ancestry source prior to the admixture event. Through simulations
and application to real data, we show that LDadmix can recover LD patterns in different admixture
scenarios and also infer an elevated LD decay curve for the ancestral American ancestry, a signal that
was previously masked by recent African and European admixture.

Together, these manuscripts highlight the continuing need for genetic methods that can be applied in
the challenging and data-limited scenarios that will continue to be frequent in biology despite the recent
expansion of available genetic data. They also highlight how new insights can be gained about different
populations, like the Greenlandic, when such methods are developed and applied.
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Dansk Resumé

Denne afhandling indeholder studier af tre basale populationsgenetiske koncepter: relatedness (et mål
for hvor tæt folk er i familie), admixture (et fænomen hvor individer fra forskellige befolkninger får
børn sammen) og LD (et mål for statisk afhængighed mellem genetiske loci). Afhandlingen præsenterer
både nye statistiske metoder samt anvendelser af andre relativt nye metoder til at øge vores forståelse
af den grønlandske befolknings historie.

Det første manuskript i denne afhandling adresserer det faktum, at der mangler metoder til at estimere
relatedness baseret på begrænset genetisk data. Relatedness spiller en vigtig rolle i alle dele af popula-
tionsgenetik, men de fleste metoder til at estimere relatedness kræver adgang til populations-specifikke
allelefrekvenser og genotype data af høj kvalitet. Vi præsenterer en ny metode, der kan bruges til at infe-
rere tætte familierelationer uden at bruge populations-specifikke allelefrekvenser og som kan anvendes
direkte på lav-dybde sekventeringsdata (4x) uden at kalde genotyper. Metoden kræver udelukkende
genetisk data fra to individer og kan dermed potentielt udvide antallet af studier, hvor det er muligt at
inferere relatedness.

I det andet manuskript undersøger vi den historiske kontakt mellem grønlandske inuit og europæere
fra et genetisk perspektiv. I den nuværende grønlandske befolkning har mange ikke blot inuit forfædre
men også europæiske forfædre, men det er ikke klart hvilke europæiske lande deres europæiske for-
fædre kommer fra. Der er et tæt historisk forhold mellem Grønland og Danmark, men historisk set har
også nordmænd, tyske missionærer, hollandske hvalfangere og europæere fra andre lande haft kontakt
med Grønland. Ved at analysere SNP array data fra grønlændere og europæere identificerede vi Dan-
mark som det primære oprindelsesland for grønlændernes europæiske forfædre, og kvantificerer i hvor
høj grad 14 forskellige europæiske lande har været oprindelseslande. Vi diskuterer derefter i detaljer,
hvordan vores resultater passer med den historiske viden der er om grønlandsk-europæisk kontakt.

I det tredje og sidste manuskript, præsenterer vi et computerprogram til at estimere LD i en admixed
befolkning. LD i sådanne befolkninger er påvirket af mange aspekter af befolkningens historie, inklusiv
effektiv populationsstørrelse og admixture. LDadmix estimerer to-locus haplotypefrekvenser i hver af
de ancestrale befolkninger til en nyligt admixed befolkning. Disse to-locus haplotypefrekvenser bliver
derefter brugt til at estimere LD i disse ancestrale befolkninger inden admixture. Gennem simuleringer
og analyser af rigtig data viser vi, at LDadmix kan genskabe ancestrale LD mønstre i forskellige scenarier
og vi viser også, at der er højere LD i den ancestrale amerikanske befolkning, et signal der tidligere var
maskeret af nylig admixture med afrikanere og europæere.

Samlet viser de tre manuskripter tydeligt at der – selv for basale koncepter som relatedness, admixture
og LD - stadig er brug for nye genetiske metoder, der kan bruges i situationer hvor data er kompliceret
eller begrænset. Det er situationer der vil blive ved med at opstå til trods for at der efterhånden er store
mængder genetisk data tilgængelig. Manuskripterne viser også tydeligt hvordan sådanne nye metoder
kan genere ny viden om forskellige befolkninger som for eksempel den grønlandske.
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Reading guide

The primary content of this thesis is three manuscripts of which I am first author. One manuscript is
already published, the other two manuscript are in preparation, and are presented here as drafts.

This thesis also contains a short introduction to each manuscript, located together in chapter 1.

These introductions each have five parts. I start with a brief background of the most important top-
ics present in the manuscript. Next, I address the motivations behind the project and the goals of the
manuscript, followed by a short summary of the results it presents. After that, I clearly state my con-
tributions to the manuscript. I finish with a reflection on aspects of the study not fully covered in the
manuscript and also consider further directions for the research.

After this three-part introduction, I have a few concluding remarks.

As an appendix, I have attached two additional papers I have co-authored during my PhD. These repre-
sent some of the further work I have done during my PhD, but on projects where I played a supportive,
rather than lead role.
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4 Chapter 1. Introduction

1.1 Allele Frequency-Free Inference of Relationships

1.1.1 Background

Relatedness

Relatedness matters for all aspects of population genetics, from applied and practical to theoretical and
statistical. In conservation genetics, managed breeding programs that are designed to avoid inbreeding
must be aware of relatedness (e.g. Putnam and Ivy, 2014). In studies of ancient human populations,
understanding the relatedness of individuals buried together can shed light on social organization and
migration patterns (e.g. Amorim et al., 2018). In all species, the relatedness among a sample of indi-
viduals can inform about the relative benefit of further sequencing or sampling efforts, and depending
on the study design, related individuals may be desired, as in sibling-based heritability studies (e.g.
Athanasiadis et al., 2019) or unwelcome, when estimating population structure (Pritchard et al., 2000).
Many statistical methods in population genetics will return spurious results if they fail to account for
relatedness (Voight and Pritchard, 2005). And finally, the recent popularity of at-home genetic ancestry
companies is at least in part due to the desire of individuals to find relatives.

There are multiple definitions of relatedness that can be useful depending on the context. A pedigree
(Figure 1.1A) specifies a degree of (pedigree) relatedness for all the individuals it includes. Pedigree
relatedness addresses the familial relationship categories we are most familiar with: grandparent, aunt-
uncle, second cousin, as well as more distant ones such as 8th cousins, once-removed. Recently, popula-
tion genetics has often found more use for genomic measures of relatedness which use genetic similar-
ity to quantify relatedness because they better reflect important biological and evolutionary processes
(Speed and Balding, 2015; Kardos et al., 2015; Wang, 2016). Genomic measures of relatedness can be
useful in a number of ways. They can can be used directly, to look at inbreeding, or as in genetic associ-
ation tests to correct for correlation in phenotypes due to shared ancestry. They can also be used to infer
pedigree relationships between individuals, as we will discuss further below.

There are multiple possible measures of genetic similarity available to estimate genomic relatedness,
including correlation of genotypic values (e.g. Yang et al., 2010), kinship/coancestry coefficients (Wright,
1922), identity-by-descent tracts (e.g. Browning and Browning, 2013), as well as coalescent estimates of
time to most recent common ancestor (e.g. Speidel et al., 2019). Many of these rely on the concept of
identity-by-descent (IBD) (Thompson, 2013). IBD is the concept of *recent* shared ancestry, and is a
useful concept in part because it allows biologists to quantify relatedness in a flexible manner. Inherent
in the name, identity-by-descent, is the idea that the shared identity is descended from somewhere, a
chosen reference population or ancestor. The interpretation of IBD changes based on the choice of how
this reference is chosen so that the concept of IBD can be applied in a variety of ways (e.g. Staples et al.,
2014; Palamara et al., 2012; Browning and Thompson, 2012; Albrechtsen et al., 2010).

Below, and in manuscript 1, we utilize the k-coefficients of Cotterman (1940) to describe relatedness
between pairs of individuals. They specify the degree of genomic relatedness between two non-inbred
diploid individuals with 3 coefficients that sum to 1, where k0,k1,k2 is the probability that the pair of
individuals have 0, 1, or 2 alleles IBD at a random site on the genome, respectively. Pairs of diploid
individuals with different pedigree relationships have different expected values of these k-coefficients
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(see Table 1.1), and estimates of these coefficients, are often used to infer pedigree relatedness. The k-
coefficients can also be collapsed into a single estimate of kinship or coancestry (θ = k1/4,k2/2) (Lynch
and Walsh, 1998) which can be used for pedigree relationship inference in much the same manner (e.g.
Manichaikul et al., 2010).

Table 1.1: Expected K = (k0,k1,k2) for different relationship categories. Reproduced from the
supplement of manuscript 1.

Relationship k0 k1 k2

Monozygotic twins (MZ) 0 0 1

Parent-offspring (PO) 0 1 0

Full siblings (FS) 1
4

1
2

1
4

Half siblings/avuncular/grandparent-grandchild (HS) 1
2

1
2 0

First cousins (C1) 3
4

1
4 0

Second cousins (C2) 15
16

1
16 0

Unrelated (UR) 1 0 0

The connection between pedigree and genomic relatedness is complicated by randomness inherent in
the process of recombination. The inheritance processes that generates IBD leads to IBD occurring in
blocks along the genome, which are broken by recombination events. But, due to the stochastic process
of recombination, the realised amount of IBD that is present between pairs of individuals with the exact
same pedigree relationship can vary by quite a lot. In practice this means that there are fundamental
limits to the ability to reconstruct distant pedigree relationships (Hill and Weir, 2011). For close rela-
tionships this approach works well with sufficient data (e.g. Manichaikul et al., 2010). These concepts
are illustrated in Figure 1.1. Figure 1.1A, shows an extended pedigree, with two different pedigree re-
lationships highlighted with boxes, first cousins and avuncular. In Figure 1.1B,D, there are results of
simulations of the IBD process in the two pairs of related individuals with relationships indicated by the
pedigree, with regions of the genome colored by the IBD status shared by the pair of individuals. Figure
1.1C, shows how the fraction of the genome with IBD 1 (i.e. k1) varies across 500 replicate simulations
of the inheritance process for each relationship. The simulated genome is an approximation to the hu-
man genome, with 22 chromosomes with lengths taken from a human genetic map. Each generation the
number of recombination events were selected from a Poisson distribution, enforcing at least one event
per chromosome.
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Figure 1.1: A) Example pedigree with two highlighted relationships: first cousins (blue box) and
avuncular (e.g. uncle-nephew) (dark blue box). B) Realization of the IBD process for an avuncular
relationship for a simulated human genome. C) Histogram of the fraction of the genome that is
IBD 1 (k1) across 500 replicate simulations for each of the example relationships. D) Realization
of the IBD process for a first cousin relationship for a simulated human genome. The pedigree
figure in (A) was adapted from Li et al. (2014)

Estimating relatedness

Unfortunately, the IBD status between a pair of individuals, and thus also the k-coefficients, cannot
be observed directly and must be inferred from genetic data. What can be observed in genetic data is
identity-by-state (IBS). Two or more genetic sequences are IBS in sites where they have the same allele.
IBS is informative about IBD because a pair genetic sequences that are IBD are much more likely to be
IBS than a random pair sequences from two unrelated individuals from the same population. The ba-
sic idea behind IBD inference for a pair of individuals is therefore to look for genetic sequence identity
above what is expected for a pair of unrelated individuals. This undertaking is slightly complicated
by the fact that, despite the name, identity-by-descent does not completely indicate identity-by-state;
mutations since the choice of the reference population can allow IBD without IBS (although there are
interpretations of IBD that do not accommodate this view). Other confounding factors, such as genotyp-
ing error, must also be addressed. Fortunately, these effects are relatively minor in most cases, especially
for SNPs due to their low mutation rate (Scally, 2016).

There are two main concepts involved in using observed IBS patterns to infer IBD status. First, to
identify elevated levels of IBS, the expected amount of IBS for an unrelated pair of individuals must
be known. The expected IBS for a pair of unrelated diploid individuals can be based on the allele
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frequencies in the population, here shown for a single locus:

I = 2q4 + 2p4 + 8p2q2 + 4pq3 + 4p3q. (1.1)

Where I is the expected number of alleles the two individuals share at a locus with allele frequencies
p and q=(1-p). Genome-wide IBS in excess of expectations can be modeled as occurring due to recent
shared ancestry (i.e. IBD). Maximum-likelihood estimates of the previously introduced k-coefficients
can be achieved from genotype data (G) and population allele frequencies with the likelihood of the
k-coefficients equal to the probability of the genotype data (G) given the k-coefficients K = [k0,k1,k2]

(Thompson, 1975; Choi et al., 2009):

L(K) = PR(G|K) =
∑
j

PR(G|nibd = j)kj (1.2)

where nibd ∈ [0, 1, 2] is the number of alleles that are IBD at each site and PR(G|nibd), the probability
of the genotype data conditional on the IBD status depends on the allele frequencies in the population
(for details see the supplement to manuscript 1, or see Table 2 of Purcell et al. (2007)). This and similar
methods clearly rely on accurate estimates of population allele frequencies.

As discussed briefly above, the inheritance processes that generates IBD occur along the genome, so
that adjacent sites have a correlated IBD status. This means that we do not expect sites that are IBD to
be randomly scattered across the genome, instead IBD sites should appear in clusters, often called IBD
tracts, with regions of IBD interspersed with non-IBD regions. In the absence of IBD, IBS is unlikely to
occur by chance in long consecutive regions. So if the order of sites is known, this idea can be leveraged
to infer IBD without utilizing population allele frequencies by looking for extended regions of IBS (e.g.
Gusev et al., 2009; Stevens et al., 2011). However, as these methods rely on allelic identity without con-
ditioning on allele frequencies, they often use arbitrary thresholds that define how clusters of matching
alleles are interpreted. Of course, these two concepts used to characterize IBD can also be combined, as
is done in some IBD inference methods (e.g. Browning and Browning, 2013).

There are a huge number of methods and software programs available to estimate genomic relatedness
based on the above ideas. They have a wide variety of data requirements, utilize a range of statistical
methods, return different measures of relatedness, and have different goals. I will not go through all of
these in detail here, but I have collected a representative sample of software for estimating relatedness
from SNP genotype data (Table 1.2) and for methods estimating relatedness from next-generation se-
quence data (Table 1.3). These tables aim to provide summaries of the input requirements (i.e. are allele
frequencies used or the order of sites) and a sense of how the methods address relatedness.
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Table 1.2: Selected SNP genotype-based methods for relatedness inference

Method Utilizes Infers

allele site kinship pedigree IBD

frequencies order relationship tracts

(Chang et al. 2015) PLINK yes no yes no no

(Albrechtsen et al. 2009) Relate yes yes yes no yes

(Manichaikul et al. 2010) KING-homo yes no yes yes no

(Yang et al. 2011) GCTA GRM yes no no no no

(Conomos et al. 2016) PC-relate yes1 no yes no no

(Stevens et al. 2011) kcoeff no yes yes no no

(Gusev et al. 2009) GERMLINE no yes no no yes

(Li et al. 2014) GRAB no yes no yes no

(Manichaikul et al. 2010) KING-robust no no yes yes no

(Lee 2003) Lee no no no no no

(Browning and Browning 2013) Refined IBD yes yes yes2 no yes

Table 1.3: Sequencing-based methods for relatedness inference

Method Utilizes Infers

allele site kinship pedigree

frequencies order relationship

(Dou et al. 2017) SEEKIN yes (imputation) yes no

(Korneliussen and Moltke 2015) NGSrelate yes no yes no

(Kuhn et al. 2018) READ no3 yes no yes

(Theunert et al. 2017) relcoas yes no no no

There are a few things to take away from such a survey. One, there are quite a number of methods to
infer relatedness with SNP genotype data, as Table 1.2 could be much longer. But, more importantly,
there are fewer good options for use with sequencing data, and especially there are very few options
that can be applied without allele frequencies (Table 1.3) for sequencing studies with limited sample
size. I will elaborate further on this point below.

Finally, there are two important aspects to inferring relatedness that I have glossed over, but that warrant
a brief mention. First, diploid individuals have two copies of each chromosome, and if the two copies of
a chromosome within a single individual are IBD, we refer to this as inbreeding. This occurs due to IBD
that is present between the parents of the considered individual. Depending on the species, population,
and pedigree, inbreeding can be important to account for during the inference of relatedness. It is

1individual allele frequencies
2with provided script
3requires an another unrelated individual
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possible to extend the k-coefficients of Cotterman (1940) to a system that allows for inbreeding (Jacquard,
1972), I will briefly discuss this again below.

Second, all of my descriptions above assume the pair of individuals originates from the same homoge-
nous population. However, natural populations commonly experience immigration and gene flow, so
that the assumption of homogeneity is often not reasonable. If the two individuals originate from dif-
ferent populations, or have different ancestry compositions, allele-frequency based estimates of related-
ness, including the k-coefficients and the kinship coefficient may be affected. This occurs because the
allele frequencies in a single population no longer reflect the expected amount of IBS between a pair of
individuals with no IBD. The result can be biased estimates of relatedness, and so it is important to be
aware of and account for admixture. A common approach to infer relatedness in cases of admixture is
to replace population allele frequencies with individual-specific allele frequencies (Pritchard et al., 2000;
Hao et al., 2016), and then to estimate kinship accounting for the different allele frequencies in each indi-
vidual (e.g. equation 4 of Conomos et al., 2016). This approach can work well, but requires the accurate
estimation of individual allele frequencies, just as the homogenous population case relied on accurate
estimates of the population allele frequencies.

However, while inbreeding and admixture can affect relatedness estimates and may be present in many
datasets, practically they are often ignored. In fact, only a few of the methods listed in tables 1.2 and 1.3
can handle admixture or inbreeding, while the rest are not designed to account them.

1.1.2 Motivation and goals for manuscript 1

Given a set of unrelated individuals from a single population, allele frequencies are commonly estimated
with simple maximum likelihood methods, and the accuracy of these estimates depends on sample size
and a number of other factors I won’t cover here. So for many reasons, accurate estimates of population
allele frequencies may not be available. This can especially be a problem in studies of non-model or-
ganisms or ancient samples, as they often have very limited sample sizes. Without prior knowledge of
allele frequencies, and with a limited sample size, estimates of relatedness that rely on allele frequencies
perform much worse, (e.g. Wang, 2017; Theunert et al., 2017), and the number of applicable methods is
substantially reduced (see Tables 1.2,1.3).

This is important because the impacted studies include both non-model organisms and ancient DNA. In
these studies there are often a low number of samples available and the few samples that are available
are only sequenced to low depth, making not only allele frequency estimation, but also genotype calling
difficult.

In studies with limited sample size, but with dense SNP genotype data and a reference genome, methods
that rely on the spatial pattern of IBS along the genome (e.g. GERMLINE, kcoeff, GRAB, Table 1.2) can
be applied without allele frequencies. However, they have not been widely adopted for this use, likely
due to the high data requirements and potential difficulty interpreting their output. Also, there is a bit
of a mismatch between these methods and a lack of allele frequency information, as access to dense
SNP genotype data and a reference genome are usually associated with large studies of current-day
populations in well-studied species, where it is likely possible to achieve reasonable estimates of allele
frequencies.
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Motivated by a lack of appropriate methods, Monroy Kuhn et al. (2018) recently provided a method to
estimate relatedness between a pair of ancient individuals, each represented by pseudo-haploid geno-
types formed by sampling an allele from each site covered by a sequencing read. This method breaks
the genome into 1Mb windows, and evaluates IBS within each window. In addition to the observed
IBS pattern between the individuals, it also requires calibration of the degree to which IBS implies IBD.
In frequency-based methods, this would be provided by the population allele frequencies. Rather than
utilize allele frequencies directly, mean IBS between a set of unrelated individuals is used instead. This
is an appealing approach, but it relies on prior knowledge of and access to comparable genetic data for
a group of two or more unrelated individuals, as well as a contiguous reference genome to form the
windows.

There is a clear a lack of methods for estimating relatedness with limited data and limited genetic re-
sources. Motivated by this observation we sought to address this gap by developing a method that
could be:

• Applied to genetic data from a pair of individuals, without external allele frequencies or access to
additional individuals

• Applied to low or moderate depth sequencing data, as well as SNP genotype data

• Could be applied to incomplete reference genomes or contigs

• Robust to SNP ascertainment, and would work without prior knowledge of variable sites

1.1.3 Results

In manuscript 1, we presented a method that meets the above goals, drawing in part on previous work
that also addressed relatedness in challenging scenarios. In some ways, the method could be considered
an extension of ideas first presented in Lee (2003), a paper that presented an elegant binary test for
related vs not-related based only on SNP data for a pair of individuals, without requiring estimates of
allele frequencies. We also adopted a kinship estimator from Manichaikul et al. (2010), KING-robust,
that was developed to be robust to latent population structure, and show how it is directly applicable to
the issue at hand.

The basic logic of our method is shown in Figure 1.2, for a full explanation see Figure 1 in manuscript
1. Here we extend the Hardy-Weinberg expectation for genotypes in a single individual to a pair of
individuals from the same population and construct a two-dimensional site-frequency spectrum (2d
SFS). This 2d SFS presents one way of summarizing IBS between a pair of individuals. Figure 1.2A,
shows the expected 2d SFS for a pair of unrelated individuals at a single di-allelic site, where allele 1
has frequency p, and allele 0 has frequency q = 1 − p. In Figure 1.2B, we show a diagram of how these
values are expected to change if the individuals are related, i.e. have non-zero k1 or k2 coefficients.
The expected values for each site in the genome can be combined to generate a genome-wide summary
of IBS for the pair of individuals. This genome-wide IBS pattern is informative about IBD and thus
in turn about pedigree relatedness. In the manuscript we formalized these basic observations using
mathematical derivations assuming no admixture or inbreeding.
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(A) (B)

Figure 1.2: Conceptual introduction to the effect of relatedness on the 2d SFS for a pair of individ-
uals from the same population. A) shows the expected 2d SFS for a pair of unrelated individuals
at a single di-allelic site, with allele 1 having frequency p, and allele 0 having frequency q = 1−p.
The genotypes of the two individuals g ∈ [0, 1, 2] are arrayed on the two axes. B) shows how
these values are expected to change if the individuals are related, i.e. if they have non-zero k1 or
k2 coefficients.

We then evaluated multiple ways to estimate this 2d SFS directly from sequencing data from a pair of
individuals – and thus without calling genotypes – and showed how three different summary statistics
calculated from this 2d SFS can be used to infer close familial relationships.

Using real data from the HGDP (Rosenberg, 2006) and the 1000 Genomes (1000 Genomes Project Con-
sortium et al., 2015), we tested the method on both SNP array and whole-genome sequencing data, and
demonstrated that it could recover previously reported pedigree relatives along a relatedness gradient
from parent-offspring to first cousins. The depth of the whole-genome sequencing data was too low
to confidently call genotypes, and we showed that genotype calling with this data severely impacted
downstream estimates of relatedness, like the KING-robust kinship estimator. Furthermore, by down-
sampling the whole-genome sequencing data in a way that imitated restriction-site associated DNA
approaches (RADseq) (Baird et al., 2008), we also showed how the method was robust to a reduced se-
quencing effort. Finally, using real and simulated data, the method was demonstrated to be robust to a
wide array of ascertainment schemes as well as recent population size changes.

1.1.4 My contributions

For Manuscript 1, I performed all analyses and simulations, made all of the figures, and contributed to
study design. An initial version of Figure 1 was made by Anders Albrechtsen. The manuscript writing
was shared between me and Ida Moltke. Derivations in the supplement are by Ida Moltke.

1.1.5 Conclusions and future directions

The estimation of pairwise relatedness or genetic similarity is the first step of most genetic analyses,
either because it is intrinsically of interest, or because it will aid in the interpretation of all downstream
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results. For many studies in modern humans and other well-studied species these analyses have become
even more important as sample size grow and the presence of relatedness becomes inevitable (Shchur
and Nielsen, 2018). In contrast, manuscript 1 focuses on studies that are not drowning in data and are
instead short on resources, either in terms of access to samples, sequencing coverage or budget, or access
to genomic resources, and tries to allow a broader range of studies to conduct analyses of relatedness
than was possible before.

Despite the positive results in manuscript 1, there is certainly room for further work in the area of
inferring pairwise relatedness without external allele frequencies. Below, I will briefly discuss two broad
areas that I feel are potential avenues for increasing the applicability and interpretability of the method.
First, I will discuss the estimation of pairwise IBS from sequencing data, and then I will move on to
discuss possible ways to better interpret IBS patterns for a pair of individuals of unknown relationship
in the case of complicating factors such as inbreeding and admixture.

Correctly accounting for the statistical uncertainty of the genotype in low and moderate depth next-
generation sequencing data is not an easy task. Some of the most powerful methods to deal with this
uncertainty leverage data across many individuals (DePristo et al., 2011), but again manuscript 1 is
focused on a more restricted case with only access to genetic data for a pair of individuals. We did
not investigate in detail all of the potential pitfalls when estimating pairwise IBS for a novel pair of
individuals, but we did report that genome-wide mappability filters ((e.g. Derrien et al., 2012), and the
choice of genotype quality error model, as implemented in ANGSD (Korneliussen et al., 2014), both
made a meaningful difference in our results. Investigating this in further detail was beyond the scope
of the manuscript, but advances in the production, alignment, and assembly of sequencing data will all
be relevant to improving these estimates.

The sequencing data we used to evaluate the method was approximately 4x depth. This was too low
to call genotypes, and we showed that genotypes called from this data produced nonsense estimates
of relatedness. It would certainly be worthwhile to investigate the sensitivity of the method to lower
sequencing depths, which would make the estimation of pairwise IBS more difficult. A chief concern
with lower sequencing depths is maintaining the ability to correctly recover the rate of shared heterozy-
gous genotypes. Shared heterozygous sites are very informative about relatedness as they show both
that the site is variable in the population and that the pair of individuals have the maximum local IBS
value at this site. In contrast, a shared homozygous genotype also has the maximum local IBS value, but
fails to provide any evidence that alleles at this site are segregating in the population. A minimum of
four sequencing reads, two from each individual, is needed to clearly support the presence of a shared
heterozygous genotype. A depth of four is not necessary at every site, but the presence of some sites
with this depth are likely importantant for estimating relatedness with this method.

Application to ancient samples presents it own set of challenges. We did not test the method in manu-
script 1 on ancient samples, but it is an area of future interest. It may be possible to adapt IBS estimation
methods to account for some of the unique challenges of working with ancient samples, such as post-
mortem damage to DNA (Handt et al., 1996). In the supplement to manuscript 1, we briefly noted the
inclusion in ANGSD of methods that can estimate IBS for each of the 100 possible pairwise genotypes
for the four bases of DNA (10 distinct genotypes in each individual). This has the potential to improve
estimation of IBS for ancient DNA, as it can help account for the excess of C→T (G→A) changes due to
DNA degradation. Often, ancient samples are treated as pseudo-haploid (e.g. Monroy Kuhn et al., 2018)
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due to a low sequencing depth, but manuscript 1 offers a different approach that may be helpful in the
future.

There are certainly also some important biological concerns that warrant further consideration. In
manuscript 1 we specifically choose to only focus on pairs of individuals with no sign of inbreeding
or admixture. This obviously excludes many studies outright, and of course it is certainly difficult to
rule out inbreeding or admixture with limited data. We note that using an estimated pairwise 2d SFS it
is possible to directly compare the heterozygosities of the two individuals and, with some assumptions,
estimate the inbreeding coefficients. This is potentially very useful as inbreeding can be intrinsically
interesting and can also bias estimates of relatedness if not accounted for.

Admixture also has the potential to bias estimates of relatedness, and has been shown to be prob-
lematic for the KING-robust kinship estimator (Manichaikul et al., 2010), due to the assumption of
Hardy–Weinberg equilibrium. And since our method is in part based on the KING-robust kinship es-
timator this issue is also relevant to our method. We did not investigate the effects of admixture in
manuscript 1, but the summary statistics we presented are sensitive to differential admixture between
the individuals. It is possible to use the statistics in our method for quantifying the genetic differentia-
tion between the ancestries of the two individuals, as noted by Manichaikul et al. (2010), but addressing
pedigree relatedness at the same time is difficult. In the same vein, Lee (2003) suggested a test for dif-
ferent ancestries across a pair of individuals, essentially testing if the genotypes of the two individuals
seemed be drawn from a single set of allele frequencies. The next step of actually extending the method
to allow estimation of relatedness among admixed individuals without allele frequencies is left for a
further study and may not be even possible without using the idea of IBD tracts. However, it should
be noted that if the pair of individuals have the same admixture proportions, as may be common with
older admixture events, the methods in manuscript 1 should apply directly.

To conclude, I will quickly note an interesting parallel of the method presented in manuscript 1 with the
relatedness estimates reported for one of the largest studies to date, the UK biobank, which calculated
relatedness between approximately 1011 pairs of individuals (Bycroft et al., 2018). Both papers utilized
the KING-robust kinship estimator (Manichaikul et al., 2010), and noted it did not require specification
of allele frequencies. It is interesting to see convergence of methods at such different scales.
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1.2 Where did the European ancestors of the Greenlanders

come from?

1.2.1 Background

A brief genetic history of the Greenlandic Inuit

Greenland is the largest island in the world and, due to its remote location and challenging arctic envi-
ronment, it was first peopled circa 2500 BC. The present inhabitants of Greenland are the Greenlandic
Inuit, descendants of the Thule culture that expanded out of Alaska and arrived in Greenland sometime
before the 14th century CE (Gulløv, 2008; Friesen and Arnold, 2008). The Thule culture utilized inno-
vative ways of living and thriving in the arctic, including new hunting and sailing technologies that
allowed better use of the scarce resources in the challenging climate, especially marine mammals. The
Inuit arrived in Northwest Greenland and expanded along the southern coast, eventually reaching East
Greenland and Northeast Greenland (Sørensen and Gulløv, 2012; Gulløv, 2008). In 2019, the current
population of Greenland is approximately 56000 (Statistics Greenland, accessed April 2019).

Previous inhabitants of Greenland include the Saqqaq and Dorset cultures (Early, Middle and Late)
(Grønnow and Sørensen, 2006), as well as the Norse Vikings. There is evidence of interaction between
the Late Dorset and the Thule Inuit in Greenland (Gulløv, 2008) and some genetic evidence admixture
between the Inuit and people related to the Dorset, but it may have occurred in the Old World, prior to
contact in Greenland (Raghavan et al., 2014).

Despite an apparent temporal overlap in Greenland prior to the end of the Norse period in Greenland
in approx 1450 CE, the extent of interaction between the Inuit and the Vikings is still an area of study
(Gulløv, 2008; Golding et al., 2011). There is evidence of some trade interactions between the Vikings and
Native Greenlanders, but the Vikings and other Native Greenlanders remained distinctly economically
independent (Gulløv, 2008). There is no clear genetic evidence of gene flow from the Vikings into the
Inuit (Raghavan et al., 2014; Moltke et al., 2015).

Starting in the 16th century there was a new period of European contact with Greenland, as Europeans
came to Greenland as explorers, whalers, missionaries, traders, and colonizers. In the 16th century, ex-
plorers from England searching for the Northwest passage were some of the first Europeans to arrive in
Greenland after the Norse period ended in approximately 1450 CE (Gulløv, 2008; Frandsen et al., 2017).
In the 17th and 18th centuries, whaling near Greenland was a big European economic activity, with fleets
from the Netherlands, England, Denmark-Norway and other countries carrying sailors from many re-
gions of Europe to Greenlandic harbors. In 1720’s and 1730’s, missionaries from Denmark-Norway and
Germany arrived and established missions and religious traditions that continue to the present. In 1751,
Denmark-Norway claimed a colonial trade monopoly with Greenland, with a goal towards excluding
other nations access. Greenland remained a formal colony of Denmark until the 1950s, when Green-
land and its population joined Denmark. In 1979 Greenland gained its own parliament and in 2009 it
established self-government, though it remains part of the Kingdom of Denmark.

Previous work has characterized the genetic and demographic history of the Greenlandic Inuit. The
genomes of the Greenlandic Inuit have signatures of adaptation to the arctic environment at loci in-

http://www.stat.gl/population
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volved in fat metabolism (Fumagalli et al., 2015). Their genomes also show the effects of an “extreme
and prolonged population bottleneck” (Pedersen et al., 2017), with high levels of LD (Moltke et al., 2015;
Pereira et al., 2015) and a flattened site-frequency spectrum (Pedersen et al., 2017). Estimates of FST
between the Greenlandic Inuit ancestry and other world populations are large, with estimates of 0.12 to
the Han Chinese and 0.16 to Europe (Moltke et al., 2015). This work has both informed about migration
patterns within Greenland (Moltke et al., 2015), and established the relationship of the Greenlandic Inuit
to other world populations (Raghavan et al., 2014).

Previous work has also shown that while the current day population of Greenland draws most of its an-
cestry from the Inuit, it also has a significant amount of genetic ancestry from Europe, due to the history
of contact and colonization (Bosch et al., 2003; Rasmussen et al., 2010; Pereira et al., 2015; Moltke et al.,
2014). Moltke et al. (2015) estimated that the current population of Greenland derives approximately
75% percent of their ancestry from the Inuit and the remaining 25% from Europeans. The European
ancestry in Greenland shows strong signals of a male sex bias (Bosch et al., 2003; Moltke et al., 2015),
and also varies by location in Greenland, with the lowest rates of European ancestry occurring in North
and East Greenland (Moltke et al., 2015).

Haplotype-based methods

An aspect of the genetic history of Greenland that has received less study are the sources of the Eu-
ropean ancestry in the present day Greenland population. Europeans from many different countries
have come to Greenland, but we don’t have genetic evidence of where in Europe the European ancestry
in Greenland is from. This is likely due to a lack of methods that have power to distinguish between
the genetically very similar, potential European ancestry sources. Recently, a number of studies have
had success resolving fine-scale genetic structure using haplotype-based methods to quantify genetic
structure. Across the world, these methods have been applied to human populations in the British Isles
(Leslie et al., 2015), Latin America (Chacón-Duque et al., 2018), Siberia (Sikora et al., 2018), Finland (Mar-
tin et al., 2018), The Democratic Republic of the Congo (van Dorp et al., 2019), and The Iberian Peninsula
(Bycroft et al., 2018), and have revealed the genetic makeup of modern populations with remarkable res-
olution, as well as helped uncover and describe past patterns of human migration and admixture.

Unlike methods like STRUCTURE (Pritchard et al., 2000), that assume each locus provides indepen-
dent information about population structure, haplotype-based methods utilize information present in
the patterns of linkage disequilibrium and use haplotype-based measures of genetic similarity to iden-
tify shared ancestry. These methods have the ability to resolve subtle degrees of genetic structure that
methods that assume independence between loci fail to capture (Lawson et al., 2012). In particular, this
presents an opportunity to investigate the process of admixture in great detail (e.g. Hellenthal et al.,
2014).

Lawson et al. (2012) presented a haplotype-based method, CHROMOPAINTER, that utilizes a hidden
Markov model (HMM) that statistically reconstructs (“paints”) the phased haplotypes of a target indi-
vidual by reconstructing it as a mixture of reference haplotypes, following Li and Stephens (2003). Given
a target haplotype and a set of reference haplotypes with the same sites, CHROMPAINTER tries to in-
fer the best matching reference haplotype at each site in the target haplotype. Transition rates between
adjacent genomic loci are given by a local recombination rate, and local allelic mismatches between the
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target and reference haplotypes are accommodated with a mutation parameter. The path of reference
haplotypes that is used to reconstruct the target is an approximation to the genealogical nearest neigh-
bors along the target haplotype (Lawson et al., 2012). This reconstructed path, and more generally the
expected frequency of each reference haplotype in that path, is a rich source of information about the his-
torical relationships between the individuals and populations that the target and reference haplotypes
originate from.

The connection of this analysis to admixture is both simple and subtle. If the target haplotype is from an
admixed individual, and the reference haplotypes represent the admixture sources, the reconstructed
path along the target haplotype will approximate the true underlying ancestry (Hellenthal et al., 2014),
sometimes called ancestry tracts (e.g. Gravel, 2012). Difficulty arises because, in practice, the reference
haplotypes do not represent a single ancestry, due to incomplete lineage sorting or gene flow. This
means that it is naive to assume that matching a reference haplotype sampled from a certain population
represents ancestry from that population.

One way to attempt to account for the complex historical relationships among reference haplotypes and
the populations/ancestries they represent is by assigning the reference haplotypes to distinct groups and
quantifying the degree of haplotype matching between those groups. Each group can then be identified
by its distinct signature of haplotype matching to all other groups. The ancestry in the target can then
be modeled as a mixture of these reference groups. This approach was taken in Lawson et al. (2012) and
Chacón-Duque et al. (2018), and is the approach we used in manuscript 2.

1.2.2 Motivation and goals for manuscript 2

Manuscript 2 is motivated by the observation that European ancestry, in addition to Inuit ancestry, is
an important aspect of the genetic makeup of the present day Greenlandic people. Despite this, we do
not have a good understanding of how the history of Inuit/European contact has generated the current
gene pool in Greenland. The Danish-Norwegian and later Danish colonial period and subsequent years
as part of the Kingdom of Denmark have certainly had a large impact on Greenland, and likely also in
the genetic composition of the Greenlandic people. But the extended and varied history of contact be-
tween the Greenlandic people and Europeans is broader than this relationship. Quantifying the genetic
contributions of different European countries to Greenland can further enrich our understanding of the
histories of both Greenlandic and European peoples.

Historical documents can shed some light on what to expect. There are records of marriages between
Greenlanders and Danes, Norwegians, and Swedes going back to the 1740’s, as well as census docu-
ments that estimated 8% of Greenlanders to have both Inuit and European ancestry around 1800 (Sei-
ding, 2013). But existing records do not allow a full picture of gene flow from Europe. Some written
accounts from visitors to Greenland are also available e.g. “... 9644 eskimos of which 3/4 has Danish
blood in them” by Charles Francis Hall, polar explorer about the population of the Sisimiut region in
Greenland (Hall, 1864). The Dutch may also be source of European ancestry in Greenland: “No wonder
half of Sisimiut is said to be of Dutch descent.” (Erngaard and Vejen, 1972), a reference to the whaling
period in the 17th and 18th centuries when the Dutch sent up to 100 ships each year to Greenlandic
waters and ports (Frandsen et al., 2017).
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In manuscript 2 we sought to exploit the advent of the new powerful haplotype based methods to
investigate to what extent different European countries have contributed to the genetic makeup of the
present-day Greenlandic people. Prior to the study we expected that Denmark was a major source, but
that also other countries, including the Netherlands and Norway were among the sources based on their
history of contact with Greenland.

1.2.3 Results

To pursue our goal, we combined SNP data from 1582 admixed Greenlanders, 181 unadmixed Greenlan-
ders, and 8275 Europeans from 14 countries to conduct a haplotype-based analysis of European ancestry
sources in Greenland.

We then attempted to quantify the ancestry contributions from each of the 14 European countries in two
ways, with group-based and individual-based analyses. In the group-based analysis, we estimated that
Denmark contributed 91% of the European ancestry in Greenland, with the only other European country
contributing more than 1% ancestry being Norway at 2.1%. This result suggests that Denmark has been
the primary source of European ancestry in Greenland, substantially higher than other countries. In
the individual-based analysis we estimated that 69.5% of the admixed Greenlanders had at least 5%
Danish ancestry, many more than any other European reference country. In both analyses, we saw little
evidence of ancestry from the British-Irish Isles, or from the Netherlands/Belgium, both regions with
extended historical contact with Greenland.

We also performed an analysis to investigate the timing of admixture in Greenland, specially gene flow
in the last few generations. Based on an analysis of local ancestry (Maples et al., 2013) within each ad-
mixed Greenlander, we identified a large number of individuals with local ancestry patterns consistent
with very recent ancestors having 100% European ancestry. In total, we estimated up to 35% of the
total European ancestry in the admixed Greenlanders to be consistent with a European ancestor in the
previous generation. Many other individuals had local ancestry patterns consistent with a European
ancestor in the previous three generations, suggesting much of the European ancestry in Greenland is
very recent.

Taken together, these results suggested that most of the European ancestry is more recent than the start
of the Danish colonial period, with little evidence of earlier European gene flow to Greenland not as-
sociated with Nordic countries. Specifically, the lack of any evidence of Dutch ancestry was surpris-
ing, as accounts such as Erngaard and Vejen (1972) suggest otherwise. However, as we discuss in the
manuscript there may be reasonable explanation for this, including a severe epidemic in the area where
the Dutch whalers stayed. And notably the ancestry source results fit with our observation that much
of the gene flow appear to be recent, consistent with demographic statistics in Greenland and matching
a time when Denmark was the primary European contact with Greenland.

1.2.4 My contributions

For manuscript 2, I performed all analyses, made all of the figures, and contributed to study design.
Manuscript writing was shared between me, Aviaja Lyberth Hauptmann and Ida Moltke, with help
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from co authors and Inge Høst Seiding, an expert on the recent history of Greenland as well as Anders
Albrechtsen. Aviaja and Inge were instrumental in providing a historical context to the results of the
genetic analyses. They also contributed to Figure 1. In a future version of this manuscript Aviaja may
become joint first author.

1.2.5 Conclusions and future directions

In the manuscript, we address the analyses and their historical context in great detail. Below I will
briefly discuss a few issues that arose during this study, as well as mention some opportunity to further
this work.

Initially, we were worried that the relatively low number of overlapping SNP sites (135K) between the
Greenlandic and European data sets would be a barrier to our ability to recover fine-scale population
structure necessary for the ancestry analysis. However, it turned out to be sufficient for our goals.
We were likely aided by the large sample sizes for the European reference countries (a total of 8275
individuals across the 14 countries). Early analyses with more SNPs, and fewer individuals per country
had difficulty distinguishing between countries with similar ancestries such as Denmark vs Norway
(data not shown). Analyses on a finer scale than countries such as in Leslie et al. (2015), may have
higher data requirements.

The investigations into the timing of European gene flow into Greenland highlighted some of the com-
plexities of dealing with recent and ongoing admixture. This type of admixture is not well approximated
by pulse admixture models that are behind popular methods for inferring admixture history, often based
on linkage disequilibrium (e.g. Loh et al., 2013; Hellenthal et al., 2014). Methods like this can be applied
to the Greenlandic data, but it is difficult to interpret the results as the mean age of admixture is not very
informative in this case. It is also possible to use the lengths of local ancestry tracts to date admixture
events (e.g. Gravel, 2012), but we found it difficult to statistically phase the Greenlandic data with a low
enough switch error rate to characterize the long local ancestry tracts that result from recent admixture.
Plots of local ancestry along the genome of first generation offspring of one Inuit and one European par-
ent suggested switch error rates that were sufficiently high to impede the identification of long ancestry
tracts.

Instead, we used what we called the “ternary ancestry fraction” plots (see Figure 5, manuscript 2).
These are a relatively simple way to summarise local ancestry fractions and address the phasing issues
discussed above, as these fractions are robust to phasing switch errors. These summaries of local ances-
try do seem to capture some important patterns of recent admixture in Greenland, and could be useful
in other studies of recent admixture, especially if developed further. For example a similar idea was
developed in Xue et al. (2017) to fit a pulse admixture model, but the ongoing and recent admixture
in Greenland again complicates many useful assumptions when modeling admixture, such as indepen-
dence of ancestry tracts on either side of an recombination event.

While the genetic history of Inuit and European contact in Greenland is certainly a topic of some interest,
national and individual identity can be a delicate subject. This is especially the case when genetic results
provide information about an individual’s ancestors. We did not report individual-level ancestry results
for privacy reasons. Recognising this, we are committed to communicating these results in a responsible
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manner.

Indeed, this work has already benefited from outreach in Greenland. An early version of these results
were publicly presented at the the Greenland National Museum & Archives in 2018 by co author Aviaja
Lyberth Hauptmann. This lead to two large improvements in the study. First, our European reference
countries did not include the Netherlands at that time, and she heard feedback from Greenlanders that
the Dutch were important to have represented among the European references. We were able to include
them in subsequent analyses. Second, this presentation played a vital role in the inclusion of Inge Høst
Seiding, the head of archives at the Greenland National Museum, an invaluable addition. There are
further plans to make this research relevant outside the academic world.



20 Chapter 1. Introduction

1.3 Estimating linkage disequilibrium in admixed populations

1.3.1 Background

Linkage disequilibrium

Linkage disequilibrium (LD) is a broad term used to describe the nonrandom association of alleles at
different loci. LD is affected by many different evolutionary process, such as genetic drift, selection,
recombination and mutation. Due to the effect of these genetic processes on LD, it is informative for
building genetic maps (e.g. Myers et al., 2005), inferring natural selection Voight et al. (2006), as well as
making inferences about demographic processes including population size changes Tenesa et al. (2007)
and admixture Loh et al. (2013). An understanding of LD is also very important for the design of genetic
studies, it can help predict the number of sites you need to cover the genome, and the power of genetic
association studies Pritchard and Przeworski (2001). Furthermore, LD can help prune a set of loci so
that statistical methods that treat each site independently can be reasonably applied.

LD is often measured across pairs of loci and there are number of different two-locus measures of LD
that are sensitive to different aspects allelic associations. Below are the most common measures of LD
for two loci, defined in terms of haplotype frequencies:

DAB = pAB − pApB (1.3)

r2 =
D2

pA(1 − pA)pB(1 − pB)
(1.4)

D ′ = |
D

Dmax
|. (1.5)

Where A and B are alleles at different loci, px is the frequency of allele x, pAB is the frequency of the
haplotype carrying both the A and B alleles, and Dmax, is the smaller of pA(1 – pB) and pB(1 – pA).
These various measures of LD are all useful in different contexts, but r2 is now likely the most commonly
used measure as it has an interpretation in terms of the statistical Pritchard and Przeworski (2001) and
genealogical independence of the two loci McVean (2002). One important note is that these measures
are not independent of the two allele frequencies at the pair of loci; this complicates comparing LD
measures between pairs of loci with different allele frequencies Hedrick (1987). As can be seen from the
above equations, both D′ and r2 are adjusted by the allele frequencies at the two loci, in part so that
values for pairs of loci with different allele frequencies are made more comparable .

Given a set of haplotypes or haplotype frequencies, the above LD measures can be calculated directly.
However, many common methods of acquiring genotype data, such as next-generation sequencing or
SNP arrays, do not intrinsically provide phase information across sites in diploid individuals, especially
for loci separated by more than a few hundred base pairs. This means that for many types of available
genetic data, the LD measures cannot be calculated directly, but need to be estimated. One option is
to infer haplotypes from genotypes using statistical phasing (e.g. Stephens et al., 2001; Delaneau et al.,
2011), an approach that leverages haplotype sharing across many individuals to help infer haplotype
phase. But accurate statistical phasing is often reliant on utilizing sets of known reference haplotypes,
and is therefore not always of sufficient quality. Another option is to use the genotypes to estimate
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LD. There are multiple methods for the estimation of LD from genotype data, including methods that
estimate haplotype frequencies from genotypes using an expectation-maximization algorithm (Excoffier
and Slatkin, 1995) or solving a cubic equation (Gaunt et al., 2007), as well as other popular methods
(Rogers and Huff, 2009).

In practice, the LD measures are applied to a sample of individuals or haplotypes that represent a larger
group or population. A natural next step is to use the LD measured in this sample to estimate LD in the
population. This is appealing because LD in populations can be related to both the recent and long-term
effective population size of the population (Hayes et al., 2003; Waples, 2006; Tenesa et al., 2007).

But the extrapolation from sample LD to population LD is difficult. The sampling process itself produces
LD, akin to the genetic drift that occurs each generation. Assuming we aim to estimate the LD in a given
population from a random sample of size n, then the estimate will be biased and the size of the bias
is dependant both on the sample size (approximately 1/n for loci not in LD), (Weir and Hill, 1980)), as
well as the population-level LD. There are no unbiased estimators of r2 (Ragsdale and Gravel, 2019),
however there are methods that attempt to correct for this bias for pairs of loci with low (Weir and Hill,
1980) or high (Bulik-Sullivan et al., 2015) levels of LD, and addressing this bias is still an active area of
research (e.g. Ragsdale and Gravel, 2019).

1.3.2 Linkage Disequilibrium decay curves

Recombination breaks up existing haplotypes when they pass from one generation to the next. In this
way, recombination can reduce LD as alleles get shuffled onto new haplotypes each generation. Pairs
of loci separated by greater genetic distances are more likely to have recombination events between
them, and have lower expected values of LD. This leads to a natural summary of LD across many
pairs of loci in the form of an LD decay curve. LD decay curves summarize the mean LD across a
range of genetic distances and are presented as the primary LD summary statistic in many studies of
humans or other species (e.g. 1000 Genomes Project Consortium et al., 2015; Franssen et al., 2015; Alves
et al., 2019). Like LD generally, LD decay curves contain information about demographic processes,
like population size changes. For example, LD for pairs of loci at close distances are more dependent
on long-term effective population size, and LD for pairs of loci at further distances more dependent
on recent population history (Hill, 1981; Hill and Weir, 1988). Most often decay of r2 is presented, but
other measures of LD can also be used (e.g. Abecasis et al., 2001). Different human populations have
different LD decay curves, due to their different population histories. To illustrate this, I have included a
figure of LD decay across the 26 population samples present in the 1000 Genomes Project (Figure 1.3A).
This figure was part of the manuscript announcing the completion of the 1000G project 1000 Genomes
Project Consortium et al. (2015). Evident in Figure 1.3A is the large variation in r2 decay curves across
the 1000G population samples. The most noticeable pattern is the difference between the LD curves for
the non-African population samples (non-orange colors) and those for African population samples red-
orange-yellow colors), with African populations having lower LD and a less steep decay, reflecting the
distinct population histories of populations with an out-of-Africa bottleneck, and those without. Notice
that the issue of sample size bias has been considered here by downsampling each population sample
down to the same number of individuals (n = 61) making them comparable. In Figure 1.3B, I illustrate
the effect of sample size on r2 and r2 decay curves; it contains seven LD decay curves from a single
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population, measured across a range of sample sizes from n = 5 to n = 679. The upward bias in r2 due
to sample size is visually evident across the range of example sample sizes.

(A)

0 200K 400K 600K 800K 1000K
Distance (bp)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

n=5
n=10
n=25
n=50
n=100
n=350
n=679

(B)

Figure 1.3: LD decay curves for human populations. A) LD decay curves across 10,000 randomly
selected polymorphic sites in each population. Each population sample is thinned to n=61. The
plotted line represents a 5 kb moving average, and the graph extends out to 100kb. B) Seven LD
decay curves from unadmixed Greenlanders, thinned to samples sizes of [5, ... ,679], and only
measured at sites with minor allele frequency > 0.05. The plotted line represents a 5kb binned
average and the graph extends out to 1Mb. A) is taken directly from from 1000 Genomes Project
Consortium et al. (2015) and is in the public domain.

1.3.3 Motivation and goals for manuscript 3

As discussed above, LD patterns can be related to long term and recent effective population sizes. How-
ever models that relate LD and Ne (e.g. Sved, 1971; Hill, 1981) do not directly account for gene flow
between diverged populations, an important evolutionary force in many species (Supple and Shapiro,
2018). This is a significant limitation, as genetic admixture between diverged populations can have a
substantial effect on LD patterns. At pairs of loci separated by a short genetic distance, admixture re-
sults in an LD pattern that is intermediate between the LD in the source populations of the admixture
(Chakraborty and Weiss, 1988), see also Figure 1 of manuscript 3 for an example. This means that is
is difficult to interpret LD decay curves in admixed populations, as they reflect both admixture and
demographic history.

At pairs of loci separated by a large genetic distance, admixture can produce LD that is far above the LD
in the source populations prior to admixture. LD decay curves at long distances (up to tens of millions
of base pairs) in admixed populations can be used to infer the timing of admixture events. For example
Loh et al. (2013) presents a method to fit a date of admixture to an observed pattern of long-range LD
decay. To do so, they attempt to isolate the effects of admixture on LD by excluding LD that is present
in the source populations of the admixture.

The goal of the third manuscript is in some sense the opposite: to provide a method that makes it
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possible to isolate the LD that was present in the source populations of an admixed population by
removing the effects of admixture on LD. Figure 1.4 demonstrates the basic idea.
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Figure 1.4: Diagram of a goal of LDadmix A) shows an example LD decay curve in a two-way
admixed population, plotted out to 300Kb. B) shows the LD decay curve in each of the two
admixture sources, blue and green. Notice the change of scale.

A method to do this is not needed if one has access to many individuals from each of the source popula-
tions, because in that case LD can just be estimated from directly those individuals. However, we were
motivated by the observation that there are many human populations that are recently admixed to the
extent that very few - if any unadmixed samples are available, making estimation of LD in at least one
of the source populations difficult.

A method that fulfills this goal was introduced in Moltke et al. (2015) and applied to genotype data
from a large sample of Greenlanders. The Greenlandic population is admixed with the majority of its
ancestry from Inuit and the remaining ancestry is majority European (see Manuscript 2 for details).
The estimated LD decay curves are shown in Figure 1.5, replotted by me from the results presented in
that paper. Figure 1.5 shows five LD decay curves estimated from the genotype data. The gray line
shows LD decay measured across all 4724 Individuals (4674 Greenlanders and 50 Danes). The solid blue
line shows LD decay measured across the 50 Danes, a proxy for the European ancestry in the admixed
Greenlanders. And the solid green line shows LD decay measured across a subset of the Greenlanders
that only have Inuit ancestry. Notice the solid green LD decay curve is above and distinct from the
solid blue and gray lines consistent with a long severe population bottleneck for the Greenlandic Inuit
ancestry Pedersen et al. (2017). The dotted blue and green lines are the estimated LD decay curves for
each ancestry (Inuit, European) as estimated by the method in the manuscript 2. The estimated curves
are close to the LD decay curves estimated from unadmixed samples from each of the source populations
of the Greenlandic population, with an especially close match for the Inuit ancestry.
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(A)

(B)

Figure 1.5: A) Admixture bar plot of 4724 individuals (4674 Greenlanders and 50 Danes). The
Inuit ancestry is shown in green. B) Five LD decay curves estimated from the individuals repre-
sented in the admixture plot. The gray line shows LD decay measured across all 4724 individuals.
The solid blue line shows LD decay measured across the 50 Danes, a proxy for European ances-
try. The solid green line shows LD decay measured across a subset of the Greenlanders that only
have Inuit ancestry. The dotted blue and green lines are the estimated LD decay curves for each
ancestry (Inuit, European) as estimated by the method introduced in the manuscript.

This result was encouraging, but left some open questions. Specifically, the method and result was sim-
ply presented as-is with no evaluation of the method’s performance more generally, e.g. via application
to simulated data or any other data sets. Also, the number of individuals in this study was very large
(>4.5K), many more than most studies will have access to, so it is unclear how the results are affected
when fewer samples are available. In addition, many unadmixed Greenlanders and Danes were in-
cluded in the analysis, so again it is unclear how much the results relied on their presence. Finally, the
method was never implemented in a user friendly software package, making it difficult for others to
apply. With this in mind we sought to:

• Evaluate the performance on simulated data with known LD

• Evaluate the performance with smaller sample sizes

• Evaluate to what extent the performance depends on the presence of entirely unadmixed samples
- and the distribution of admixture proportions more generally

• Facilitate other researchers conducting studies of LD in admixed populations, by producing soft-
ware to conduct the analyses
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1.3.4 Results

The results from this work are presented in manuscript 3, it presents three major results: 1) a software
program LDadmix, 2) evaluation of the performance of LDadmix on simulated data, 3) and application
of LDadmix to admixed human populations from the Americas. LDadmix is an open-source software
program that implements the method described in Moltke et al. (2015). It uses common genotype data
formats, and reports estimates of haplotype frequencies as well as r2, D, and D′ for each ancestry us-
ing genotype data from a group admixed individuals. It also requires external estimates of admixture
proportions from a program like STRUCTURE (Pritchard et al., 2000) or ADMIXTURE (Alexander et al.,
2009). LDadmix is implemented in Python 3.6 and utilizes multiprocessing, and shared memory access,
together with and just-in-time compilation with Numba (Lam et al., 2015) to allow analysis of many
pairs of loci in parallel with limited memory requirements.

Next, we presented results from testing the performance of LDadmix on simulated data. We showed
that LDadmix can work well in a two-way admixture with as few as 200 individuals, many fewer than
previously demonstrated. In addition, we showed how the accuracy of the LD estimates obtained with
LDadmix depend on the distribution of admixture proportions across individuals. Both the sum as well
as the variance in admixture proportions across individuals affected the ability of LDadmix to recover
accurate estimates of LD. On the group of 200 individuals, LDadmix was robust to the lack of unadmixed
samples, but had difficulty in cases with very little variance in admixture proportions across individuals.

Finally, we also presented results from applying LDadmix to data from admixed human populations
from the Americas. Specifically, we applied it to data from the 1000 Genomes Project with a goal of
reconstructing the LD decay pattern in the ancestral American population that contributed ancestry to
four admixed American population samples of the 1000 Genomes dataset. We recovered an elevated LD
curve for the American ancestry component, consistent with the demographic history of this ancestral
population. We further applied LDadmix to the individual population samples, but found we had
limited ability to recover population-specific LD patterns for the four populations, likely due to the
limited amount of Native American ancestry in each population sample.

1.3.5 My contributions

I wrote the manuscript with help from Ida Moltke and Anders Albrechtsen. I conducted all analyses
and simulations and made all figures. I authored the software program LDadmix, based on original
code written for analysis of data in Moltke et al. (2015) by Anders Albrechtsen. The original idea for the
model behind LDadmix was presented in Moltke et al. (2015), and I was not involved in that project.

1.3.6 Conclusions and future directions

Currently, researchers investigating short-range LD in admixed populations face a difficult choice. The
LD in a random sample of individuals from the population is likely to be significantly impacted by
admixture. But, depending on the admixture history of the population, non-admixed individuals may
be rare. In these cases, excluding admixed individuals may reduce sample size, impacting estimates of
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LD. LDadmix presents a solution to this problem, allowing the inclusion of admixed individuals, while
accounting for the effect of admixture on LD.

Despite the promising results presented in the manuscript, there is plenty of room to more fully develop
LDadmix as an approach to estimating LD in admixed populations. Below I will briefly discuss three
topics that are possible points of improvement: 1) further assessment of LDadmix with simulated data,
2) investigating the ‘effective sample size’ of each ancestry, and 3) moving beyond estimation of r2 decay
curves.

There are number of ways that we could utilize further simulations to assess the performance of LDad-
mix in a wider range of scenarios. I think the most basic outstanding question is “how many individuals
are needed?”. While we present some guidance in the manuscript, this is difficult to answer in a sim-
ple manner as the correct answer depends on multiple factors, including the distribution of admixture
proportions across individuals, the degree of genetic divergence between the admixing populations,
and the amount of LD. A further analysis of how the accuracy of estimates of LD from LDadmix scale
with sample size could help researchers by providing guidance in how to interpret LDadmix results in
a number of different contexts.

In the manuscript, we evaluate LDadmix on simulated two-way (K=2) admixture scenarios. We also ap-
ply LDadmix to a real three-way (K=3) admixture and argue that the results we achieve are reasonable.
In our analysis, accurate recovery of three distinct LD decay curves was likely possible because we had
access to unadmixed individuals to serve as proxies for two out of the three ancestry sources. However,
we did not evaluate LDadmix on a simulated K = 3 admixture scenario to demonstrate this directly,
doing so would provide further confidence in our results.

The simulated data were constructed in such a way that post-admixture recombination within two-locus
haplotypes was not not possible. This matches an assumption of LDadmix that two-locus haplotypes
in the analyzed individuals are inherited without recombination from the source populations. This is
equivalent to assuming that the two sites of each two-locus haplotype share a single source ancestry. In
the case of recent admixture, recombination is unlikely to occur between loci at close genetic distances,
so this is a very reasonable assumption, at least on average. That said, the manuscript currently does not
investigate the effect of violating the assumption of no recombination. For inferring LD at short genetic
distances in a population with recent admixture, I expect the effect to be small, but recombination places
a limit on the usefulness of LDadmix for inferring LD for at pairs of loci separated by a large genetic
distance, or in cases of non-recent admixture.

Sample sizes are very relevant for studies of LD. However, in a sample of individuals from an admixed
population, it is not likely that all ancestries present in the population will be equally represented. This
can be due to random sampling, or it can occur because the ancestries are not all equally frequent in the
admixed population. In addition, if the admixture event is not too old there can be substantial variation
in admixture proportions across individuals (Verdu and Rosenberg, 2011). We found that both the total
sum of each ancestry, as well as its distribution across individuals affected the ability of LDadmix to
correctly infer LD.

We attempted a few different methods to address this bias. A simple estimate of the sample size within
each ancestry is available as the sum of the admixture proportions of that ancestry across individuals,
but this turns out to be too optimistic, as it fails to account for the uncertainty in the source ancestry of
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each haplotype. This uncertainty occurs because we are probabilistically modeling the ancestry source
of each haplotype based on the admixture proportion of the individual it occurs in. To address this
further, we tried to devise a notion of the “effective sample size” of each ancestry. We estimated the
effective sample size of each ancestry based on the horizontal asymptote of the r2 decay curve as genetic
distance between loci increased. In practice, the asymptotic mean r2 (r̂2) was measured for loci >10Mb
apart, and the effective haploid sample size (neff) for each ancestry was estimated as: neff = 2

r̂2 .

While this notion of effective sample size accounted for at least some of the bias, it failed to capture some
important aspects of the ancestry-specific LD patterns inferred by LDadmix. This suggests that a single
effective sample size for each ancestry may not be appropriate across all pairs of loci.

Finally, in this manuscript we focused on one possible application of LDadmix; estimating ancestry-
specific r2 between pairs of loci across a range of distances, from a sample of admixed individuals,
and using these estimates to generate an LD decay curve for each source ancestry. It is also possible
to investigate LD for individual pairs of loci in more depth, including evaluating the precision of our
two-locus estimates of LD. This could be useful to investigate ancestry-specific pattern of LD at sites
of interest. LDadmix treats each pair of loci independently and so provides estimates of two-locus
haplotype frequencies within each source ancestry. The manuscript shows that RMSD values for r2 are
relatively constant across a range of distances, although they can vary by ancestry. Further work to
investigate the accuracy of two-locus haplotype frequencies in detail is warranted.

In conclusion, manuscript 3 develops and presents a novel way to analyze LD in admixed populations
and by providing a software implementation, we aim to aid other researchers interested in LD in ad-
mixed populations. LDadmix is easy to use, especially compared to alternative methods of assessing LD
decay in admixed populations that involve local ancestry assignment. In the manuscript, we have ap-
plied LDadmix to human data in this study, but it should be directly applicable to admixed individuals
of any diploid species.
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1.4 Concluding remarks

The work presented in this thesis touches on three important concepts in population genetics: relat-
edness, admixture, and linkage disequilibrium. While these concepts are not new, the work presented
here, especially the first and third manuscripts, clearly demonstrates that there is still a need for new
statistical methods addressing these topics. This is especially important when the simplifying assump-
tions made by many current methods, such as a lack of inbreeding or admixture do not hold true, as
they do not for many species and populations. Almost everywhere where we look in human history,
we find genetic evidence of admixture. Accounting for this and other evolutionary complexities will
hopefully be a more common route for methods in the future.

If this evolutionary complexity is to be better understood, the ever-growing amount of genetic data
produced can certainly help us, as long as it is properly modeled. The Greenlandic project presented
in the second manuscript provides a hint at the level of genetic resolution and understanding that is
possible to achieve with these expanding data sets. There will soon be many more opportunities to
study all manner of our history, as well as that of many other species. We should be ready to deal
with that coming reality it armed with statistical methods that address life’s complexities as well as its
inherent structure. I hope that the work presented here will end up playing a small part in that.
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Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22):2867–2873,
November 2010.

Brian K Maples, Simon Gravel, Eimear E Kenny, and Carlos D Bustamante. RFMix: a discriminative
modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet., 93(2):278–288,
August 2013.

Alicia R Martin, Konrad J Karczewski, Sini Kerminen, Mitja I Kurki, Antti-Pekka Sarin, Mykyta Ar-
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Revilla, James A Robinson, Joseph Henrich, Mark G Thomas, Nathan Nunn, and Garrett Hellenthal.
Genetic legacy of state centralization in the kuba kingdom of the democratic republic of the congo.
Proc. Natl. Acad. Sci. U. S. A., 116(2):593–598, January 2019.

Paul Verdu and Noah A Rosenberg. A general mechanistic model for admixture histories of hybrid
populations. Genetics, 189(4):1413–1426, December 2011.

Benjamin F Voight and Jonathan K Pritchard. Confounding from cryptic relatedness in case-control
association studies. PLoS Genet., 1(3):e32, September 2005.

Benjamin F Voight, Sridhar Kudaravalli, Xiaoquan Wen, and Jonathan K Pritchard. A map of recent
positive selection in the human genome. PLoS Biol., 4(3):e72, March 2006.

J Wang. Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5):302–313,
November 2017.

Jinliang Wang. Pedigrees or markers: Which are better in estimating relatedness and inbreeding coeffi-
cient? Theor. Popul. Biol., 107:4–13, February 2016.

Robin S Waples. A bias correction for estimates of effective population size based on linkage disequilib-
rium at unlinked gene loci*. Conserv. Genet., 7(2):167, March 2006.

B S Weir and W G Hill. Effect of mating structure on variation in linkage disequilibrium. Genetics, 95(2):
477–488, June 1980.

Sewall Wright. Coefficients of inbreeding and relationship. Am. Nat., 56(645):330–338, 1922.
James Xue, Todd Lencz, Ariel Darvasi, Itsik Pe’er, and Shai Carmi. The time and place of european

admixture in ashkenazi jewish history. PLoS Genet., 13(4):e1006644, April 2017.



36 Chapter 2. Paper I

Jian Yang, Beben Benyamin, Brian P McEvoy, Scott Gordon, Anjali K Henders, Dale R Nyholt, Pamela A
Madden, Andrew C Heath, Nicholas G Martin, Grant W Montgomery, Michael E Goddard, and Pe-
ter M Visscher. Common SNPs explain a large proportion of the heritability for human height. Nat.
Genet., 42(7):565–569, July 2010.



Paper I:

Allele frequency-free inference of close familial

relationships from genotypes or low-depth

sequencing data

By

Ryan K. Waples1, Anders Albrechtsen1, Ida Moltke1

1 The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark

Publication details

Published in Molecular Ecology Vol. 28: 35-48 (2019)
doi.org/10.1111/mec.14954

37



Molecular Ecology. 2019;28:35–48.	 ﻿�   |  35wileyonlinelibrary.com/journal/mec

1  | INTRODUC TION

The ability to infer the familial relationship between a pair of individ‐
uals from genetic data plays a key role in several research fields. In 
conservation biology, it is used to design breeding programmes that 
minimize inbreeding (Kardos, Luikart, & Allendorf, 2015), in archaeol‐
ogy it is helpful to understand burial patterns and other cultural tra‐
ditions (Baca, Doan, Sobczyk, Stankovic, & Weglenski, 2012; Sikora 
et al., 2017), and in population and disease genetics it is often used to 
exclude relatives, because many analysis methods within those fields 
assume all analysed individuals are unrelated and violations of this as‐
sumption can lead to wrong conclusions (Balding, 2006).

Numerous pairwise relatedness inference methods have been 
developed, for example, Thompson (1975), Lee (2003), Purcell 
et al. (2007), Albrechtsen et al. (2009), Manichaikul et al. (2010), 
Stevens et al. (2011), Korneliussen and Moltke (2015), Conomos, 
Reiner, Weir, and Thornton (2016), Dou et al. (2017), and many are 
available in popular software packages, like PLINK (Purcell et al., 
2007), and KING (Manichaikul et al., 2010). Most of these methods 
estimate either the three relatedness coefficients k0, k1 and k2, or 
the kinship coefficient �= k1

4
+ k2

2
 for each pair of diploid individu‐

als, where k0, k1 and k2 are the proportions of the genome where 
a pair of individuals share 0, 1 or 2 alleles identical by descent 
(IBD) (Thompson, 2000). By definition, alleles are IBD when they 
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Abstract
Knowledge of how individuals are related is important in many areas of research, and 
numerous methods for inferring pairwise relatedness from genetic data have been 
developed. However, the majority of these methods were not developed for situa‐
tions where data are limited. Specifically, most methods rely on the availability of 
population allele frequencies, the relative genomic position of variants and accurate 
genotype data. But in studies of non‐model organisms or ancient samples, such data 
are not always available. Motivated by this, we present a new method for pairwise 
relatedness inference, which requires neither allele frequency information nor infor‐
mation on genomic position. Furthermore, it can be applied not only to accurate 
genotype data but also to low‐depth sequencing data from which genotypes cannot 
be accurately called. We evaluate it using data from a range of human populations 
and show that it can be used to infer close familial relationships with a similar accu‐
racy as a widely used method that relies on population allele frequencies. Additionally, 
we show that our method is robust to SNP ascertainment and applicable to low‐
depth sequencing data generated using different strategies, including resequencing 
and RADseq, which is important for application to a diverse range of populations and 
species.

K E Y W O R D S

ascertainment bias, IBD, identity by descent, low-depth, NGS, non-model, relatedness
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are identical due to recent common ancestry, but because alleles 
can also be identical due to older common ancestry or recurrent 
mutations, IBD status cannot be directly observed. Therefore, the 
pairwise relatedness coefficients and the kinship coefficient have 
to be estimated, which can be done from patterns of observed 
genetic identity (identity by state; in short IBS). Once estimated, 
these relatedness statistics, k0, k1, k2 and the kinship coefficient 
can be used to infer familial relationships by comparison with the 
expectation of the statistics for different familial relationships 
(Hill & Weir, 2011).

Although inference of relatedness is of wide interest, most ex‐
isting methods are not immediately applicable in studies with lim‐
ited data or genetic resources. First, most existing methods require 
the allele frequencies of the source population. For most studies in 
modern humans, this is not a problem. However, in studies of ancient 
humans or other species, accurate estimates of population allele fre‐
quencies are often not obtainable, because only a low number of 
samples are available. Second, several existing methods consider 
consecutive loci jointly and use sliding windows or hidden Markov 
models to leverage the non‐independence of allele sharing along 
the genome between relatives (Albrechtsen et al., 2009; Gusev et 
al., 2009; Kuhn, Jakobsson, & Gunther, 2018; Stevens et al., 2011). 
These methods are powerful, but require information about the ge‐
nomic position of variable sites, and for non‐model organisms, high‐
quality reference genome assemblies are often not available. Third, 
other methods avoid allele frequencies, but rely on access to many 
samples to provide a necessary context for relationship classification 
(e.g., Abecasis, Cherny, Cookson, & Cardon, 2001). Finally, nearly all 
existing methods—both frequency‐based and others—require geno‐
type data. However, in sequencing studies, samples are often only 
sequenced to low depth due to cost and technical issues. This makes 
it infeasible to call genotypes accurately (Nielsen, Korneliussen, 
Albrechtsen, Li, & Wang, 2012), precluding the use of these methods. 
There are a few methods that estimate relatedness from low‐depth 
sequencing data by utilizing genotype likelihoods (e.g., Korneliussen 
& Moltke, 2015), or by using imputed genotype dosages (Dou et 
al., 2017). However, these methods function by leveraging access 
to many samples to estimate allele frequencies or perform accurate 
genotype imputation and are therefore not designed to apply to data 
sets with a low number of samples.

Hence, most existing methods to infer close familial relationships 
are not immediately applicable in studies where data are limited, in‐
cluding many studies of non‐model organisms and ancient samples. 
One of the few exceptions is a simple but elegant test for pairwise 
relatedness proposed in Lee (2003). This test relies entirely on the 
relative frequency of different genotype combinations within a pair 
of individuals and thus only requires genotype data from the two 
target individuals. While useful, this test does not provide any means 
to distinguish between different types of close familial relationships; 
it only provides a statistical test for a pair of individuals of the null 
hypothesis of them being unrelated.

There are only a few methods that can be used to distinguish be‐
tween different types of familial relationships for a pair of individuals 

when neither allele frequencies nor information about the relative 
genomic position of sites is obtainable. One such method consists 
of plotting the proportion of the genomic sites in which the two in‐
dividuals share both alleles IBS (which we will denote IBS2) vs. the 
proportion of the genomic sites in which they share zero alleles IBS 
(which we will denote IBS0). This method was used in Rosenberg 
(2006), where it was applied to the Human Genome Diversity 
Project (HGDP) data set. In the resulting scatter plot of the HGDP 
data (Figure 1 of Rosenberg (2006)), pairs of individuals with the 
same relationship category form distinct clusters so that it is possi‐
ble to locate parent–offspring pairs, full‐sibling pairs and to a lesser 
extent more distant relationships such as half‐siblings/avuncular/
grandparent–grandchild and first cousins.

Another such method is based in part on the KING‐robust kin‐
ship estimator (Manichaikul et al., 2010). The KING‐robust kinship 
estimator was developed to be robust to population structure, but in 
practice it has been shown to provide biased kinship estimates when 
applied to pairs of samples whose four chromosomes are not all from 
the same population (Conomos et al., 2016; Thornton et al., 2012). 
However, the KING‐robust kinship estimator is directly applicable 
to samples from the same homogenous population even when allele 
frequencies are unknown. The reason for this is that, like the test 
suggested in Lee (2003), it relies only on the genotype combinations 
within the two target individuals and does not require knowledge 
about of allele frequencies. Importantly, Manichaikul et al. (2010) 
show it is possible to infer if a pair of individuals are parent–off‐
spring, full‐sibling, half‐siblings/avuncular/grandparent–grandchild, 
first cousins, or unrelated, by jointly considering KING‐robust kin‐
ship and the fraction of sites IBS0 using SNP array data without allele 
frequencies. For example, see Figure 3a in Manichaikul et al. (2010); 
a scatterplot of KING‐robust kinship vs. the fraction of sites IBS0.

However, both the methods described above have two import‐
ant limitations. First, like most other methods to estimate related‐
ness, they were developed for genotype data only. For example, the 
KING software (Manichaikul et al., 2010) implementing the KING‐
robust kinship estimator requires genotype data as input, which can 
be problematic for studies where only moderate or low‐depth se‐
quencing data are available and calling genotypes is consequently 
difficult. Second, both methods rely on estimates of the fraction of 
sites IBS0, which can be problematic because this fraction, as well as 
the fraction of sites IBS1 and IBS2, is highly sensitive to SNP ascer‐
tainment. This means that the results of the methods are platform‐
dependent and are likely to differ between different SNP arrays and 
especially between SNP array and sequencing data sets. In turn, this 
means that it can be difficult to distinguish between full‐siblings and 
parent–offspring pairs using these methods.

Motivated by the outlined limitations to the existing methods, 
we present a method for relationship inference that–unlike most ex‐
isting methods–relies neither on allele frequencies nor on informa‐
tion about the relative position of the variant sites, and which–unlike 
other frequency‐free methods— is (1) applicable even to sequencing 
data of so low depth that accurate genotypes cannot be called from 
it and (2) robust to SNP ascertainment bias.
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The new method is inspired by previous methods; it uses the 
KING‐robust kinship estimator and a statistic R0, which is similar 
to the test statistic from the test for relatedness suggested by Lee 
(2003). However, the method is new in two important ways. First, 
besides relying on the two statistics, R0 and KING‐robust kinship, it 
also relies on a third new statistic, R1. More specifically, the method 
consists of using two combinations of these three statistics, R1–R0 
and R1‐KING‐robust kinship, to infer relationships, and it is this 
combination of statistics that makes the method robust to ascertain‐
ment bias. Second, while the new method is straightforward to apply 
to genotype data like other similar methods, we also present two 
computational approaches to estimate the three statistics directly 
from sequencing data that take the uncertainty of genotypes into 
account, allowing application to low‐depth sequencing data.

In the following, we first fully describe the three statistics, R0, 
R1 and KING‐robust kinship, how they can be estimated and other 
methodological details. Next, using simulated and publicly available 
SNP array data, we show that the new method provides similar accu‐
racy and precision to the commonly used frequency‐based method 
implemented in PLINK, when such data are available. Then, using 
sequence data from the 1,000 Genomes Project (The Genomes 
Project, 2015), we show that the three statistics can be estimated 
directly from sequencing data of low depth (~4×), here defined as 
depth insufficient for accurate genotype calling. Moreover, we show 
that the estimates obtained in this way are useful for inference of 
close familial relationships and that this is not the case for estimates 
obtained from genotypes called from the same data. Using different 
subsets of the same data, we also show that this new method, unlike 
previous similar methods, is robust to SNP ascertainment. Finally, 
we show that the method also provides useful results when applied 
to sequencing data down‐sampled to approximate data generated 
using reduced‐representation approaches, for example, restriction 
site‐associated DNA sequencing (RADseq) and discuss some poten‐
tial applications and limitations of the new method.

2  | METHODS AND MATERIAL S

2.1 | The R0, R1 and KING‐robust kinship statistics

The method for relationship inference we propose consists of esti‐
mating three statistics called R0, R1 and KING‐robust kinship from 
genetic data and interpreting plots of R1 vs. R0 and R1 vs. KING‐ro‐
bust kinship.

We define the three statistics, R0, R1 and KING‐robust kinship 
in terms of the genomewide IBS‐sharing pattern of two individuals 
of interest. At any given diallelic site, a pair of individuals will carry 
one of nine possible genotype combinations; the nine possible com‐
binations of the two individuals each carrying 0, 1 or 2 copies of a 
specific allele, for example, the ancestral allele. We can therefore 
fully characterize the genomewide IBS‐sharing pattern of a pair of 
individuals by nine counts or proportions denoted: A, B, C, D, E, F, 
G, H and I (Figure 1a), similar to a two‐dimensional site‐frequency 
spectrum (SFS) across the two individuals. The R0 and R1 statistics 

are defined as simple functions of a subset of these nine values as 
shown in Figure 1b,c, and the KING‐robust kinship statistic, origi‐
nally defined by Manichaikul et al. (2010), can also be re‐formulated 
as a function of these 9 values (Figure 1d).

The new method is motivated by several observations. First, 
the expected values of A–I vary depending on the familial rela‐
tionship between the pair of individuals of interest. Consequently, 
so do functions of A–I, including R0, R1 and KING‐robust kinship. 
Notably, there is no overlap between the joint expectation ranges 
of [R1, R0] and [R1, KING‐robust kinship] for the four close rela‐
tionship categories: full‐siblings (FS), half‐siblings/avuncular/grand‐
parent–grandchild (HS), first cousins (C1) and unrelated (UR) and the 
range of expected values for parent–offspring (PO) only overlaps 
with those of FS in a single point (Figure 2, for derivations see sup‐
plementary text). Crucially, this is true regardless of the underlying 
allele frequency spectrum and holds for any pair of non‐inbred in‐
dividuals from the same homogenous population, making [R1, R0] 
and [R1, KING‐robust kinship] potentially useful for distinguishing 
between these relationships. Second, while A–I, and thus R0, R1 and 
the KING‐robust kinship estimator can be calculated from genotype 
data, they can also be estimated directly from next‐generation se‐
quencing (NGS) data based on the expected number of sites with 
each genotype combination (see below for details). This makes the 
method appropriate even when the sequencing depth is too low for 
accurate genotype calling (see below for methodological details). 
Third, regardless of the type of data that is available, R0, R1 and 
KING‐robust kinship can be estimated without the need for popula‐
tion allele frequencies or information about the relative position of 
the genomics sites analysed. Finally, we expect the three statistics to 
be robust to SNP ascertainment because they are ratios computed 
from sites that are variable within the two samples and should thus 
be unaffected by the number of non‐variable sites and because the 
(unknown) underlying frequency spectrum should only have a lim‐
ited effect on these ratios.

2.1.1 | Estimation from sequencing data

The counts of the nine genotype combinations, A–I, and thus R0, R1 
and KING‐robust kinship for a pair of individual, can be estimated 
directly from NGS data via the use of genotype likelihoods calcu‐
lated from aligned sequencing reads. Genotype likelihoods provide 
a means to account for the genotype uncertainly inherent to low‐
depth NGS data. We used two distinct, but similar, approaches to 
estimate these statistics from sequencing data that both build on 
this idea.

The first approach, which we denote the IBS‐based approach, 
considers all ten possible genotypes at each diallelic site for each 
of the two individuals of interest and consists of a maximum‐like‐
lihood (ML) estimation of the counts of each of the 100 (10 × 10) 
possible genotype pairs (for details, see supplementary text). To per‐
form the ML estimation, we used an expectation–maximization (EM) 
algorithm, which we have added to the ANGSD software package 
(Korneliussen et al., 2014) "IBS". After obtaining the estimate of the 
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F I G U R E  1   Definitions of pairwise 
genotype categories A–I and the R0, 
R1 and KING‐robust kinship statistics. 
(a) Definition of the pairwise genotype 
categories A–I. Here, g1 and g2 denote the 
numbers of genotype for each of the two 
diploid individuals, 1 and 2, respectively. 
These genotypes are defined as the 
number of copies of a certain allele carried 
by individual 1 and 2, respectively. We 
assume diallelic variants such that g1 and 
g2 each has 3 possible values: 0, 1 and 2. 
For a pair of individuals, there are nine 
possible genotype combinations. We 
organize them into a 3 × 3 matrix and 
denote them with the letters from A to I. 
The values A–I can equivalently be either 
counts or proportions. (b) Definition of 
the R0 statistic based on the notation 
illustrated in (a). (c) Definition of the R1 
statistic based on the notation illustrated 
in (a). (d) Definition of the KING‐robust 
kinship estimator (Manichaikul et al., 
2010), formulated using the notation 
illustrated in (a)
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counts of all the 100 possible genotype pairs, we converted them 
into estimates of A–I, by summing over the counts that correspond 
to each combination. For example, the genotype pairs: AA/AA, 
CC/CC, GG/GG and TT/TT all contribute to cells A or I of Figure 1. 
Counts corresponding to genotype pairs with more than two differ‐
ent alleles (e.g., AC/AG) were discarded. The advantage of this IBS‐
based approach is that it does not require specification of a known 
allele at each site and can thus be applied to nearly any sequencing 
data set, even with low‐depth, without any prior information on the 
alleles at each site.

The second approach, which we denote the SFS‐based ap‐
proach, consists of performing ML estimation of the two‐dimen‐
sional site‐frequency spectrum (SFS) as in realSFS (Nielsen et al., 
2012). To find the ML estimate of the SFS, we used an EM method 
implemented in the ANGSD software package under the name "re‐
alSFS" (Korneliussen, Albrechtsen, & Nielsen, 2014). The SFS‐based 
approach requires one allele to be specified for each site, for exam‐
ple, the ancestral, the consensus or the reference allele. The model 
underlying this approach assumes that genotypes for each site 
have the possibility of containing this specified allele and up to one 
other unspecified allele. For the analyses performed in this paper, 
we used the consensus sequences from the highest depth individual 
(NA19042) to specify the alleles that exist at each site and restricted 
our analysis to sites where the depth in this individual was at least 
three.

The computational burden of analysing genomewide data sets 
can be significant. For both the genotype likelihood‐based ap‐
proaches described above, the main limitation is RAM, as data likeli‐
hoods for each site need to be loaded into memory for optimization. 
To overcome this limitation, we analysed each chromosome sepa‐
rately and then combined the values for each chromosome to pro‐
duce a genomewide estimate. To calculate genotype likelihoods of 
the sequencing data, we used the original GATK genotype likelihood 
model (Mckenna et al., 2010) with independent errors, as imple‐
mented in ANGSD. We also tried to use the samtools genotype like‐
lihood model (Li, 2011) with a more complicated error structure, but 
found it produced worse results (data not shown). Both IBS and re‐
alSFS produce the expected values for A–I, which we subsequently 
use to calculate R0, R1 and KING‐robust kinship. For example com‐
mand lines for each analysis, see supplemental text.

2.1.2 | Confidence intervals

All of the above estimation methods treat each site as independent. 
This assumption should not affect our expectation of each statistic 
(Wiuf, 2006), but statistical non‐independence (here due to linkage 
disequilibrium (LD) and IBD) does affect standard estimates of un‐
certainty. To quantify the uncertainty, we therefore estimated con‐
fidence intervals for all statistics using a block‐jackknife procedure. 
Confidence intervals were estimated by leaving each chromosome 
out (chromosome jackknife), which takes both the IBD and the LD 
correlation into account. The weighted block‐jackknife variance es‐
timator of Busing, Meijer, and Leeden (1999) was used to estimate 
the variance from the distribution of estimates for each statistic. The 
square root of this variance was interpreted as the standard error in 
our estimate.

2.2 | Application to simulated data

To evaluate the new method and to investigate the effects of de‐
mography on the expected statistics, we simulated genotype data 
under three different demographic histories: (1) a demography with 
constant effective population size (Ne), (2) a shrinking demography 

F I G U R E  2   Ranges of expected values and simulation results for 
R1–R0 and for R1‐KING‐robust kinship for each of five relationship 
categories: parent–offspring (PO), full‐siblings (FS), half‐siblings/
avuncular/grandparent–grandchild (HS), first cousins (C1) and 
unrelated (UR). (Top) The coloured shaded areas (sometimes just 
lines) show theoretically derived ranges of the joint expectation for 
R1–R0 based on expected IBD sharing (i.e., values of k0, k1 and k2) 
for each relationship across all possible allele frequency spectra. 
For PO, this range is a singular point and is shown as a shaded 
purple X. The coloured symbols (triangle, circle, star) and black “X”s 
show values for each relationship obtained from data simulated 
under four different scenarios. Three of the scenarios are different 
demographic histories: (1) a 10‐fold increase in Ne over the last 100 
generations, (2) constant Ne and (3) a 10‐fold decrease in Ne over 
the last 100 generations. The fourth scenario is also constant Ne, 
but sites are ascertained to have allele frequency above 5%. Note 
that, while it is difficult to see due to overplotting, all simulated 
values for PO fall very close to (R1, R0) = (0.5, 0). (Bottom) same as 
(Top), but for (R1, KING‐robust kinship). Here all simulated values 
for PO fall very close to (R1, KING‐robust kinship) = (0.5, 0.25)
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with a 10‐fold decrease in Ne over the last 100 generations, (3) an 
expanding demography with a 10‐fold increase in Ne over the last 
100 generations. For each of the three scenarios, we used the coa‐
lescent simulator msprime (Kelleher, Etheridge, & McVean, 2016) 
to simulate four haplotypes. These haplotypes were then used to 
construct pairs of related individuals in five relationship categories: 
parent–offspring (PO), full‐siblings (FS), half‐siblings/avuncular/
grandparent–grandchild (HS), first cousin (C1) and unrelated (UR). 
For unrelated pairs of individuals, the genotype data were con‐
structed by simply splitting the four haplotypes into two pairs. For 
related pairs of individuals, we constructed the genotypes at each 
variable site by first sampling whether the individuals shared 0, 1 
or 2 alleles IBD according to the expected values of [k0, k1, k2] for 
the relevant relationship (Supplementary Table S1). Then, we used 
alleles present on the four haplotypes according to the sampled IBD 
status to construct the genotypes at that site. For example, if the 
individuals were sampled to share two alleles IBD at a site, both in‐
dividuals were assigned the genotype consisting of the alleles pre‐
sent on the first two haplotypes at that site. The IBD sharing pattern 
was sampled independently for each SNP and thus LD and biological 
variation in IBD was not modelled. We concatenated the data from 
many independent simulations to achieve enough data so the IBD 
sharing was approximately equal to the expected values. Simulation 
code is available in the supplemental materials.

2.3 | Application to real data sets

To assess the utility of the new method on more realistic data, we ap‐
plied it to two different publicly available data sets: SNP array data 
from seven HGDP populations (Rosenberg, 2006), and sequenc‐
ing data from five related individuals from the Luhya in Webuye, 
Kenya (LWK) population of the 1,000 Genomes Project phase 3 (The 
Genomes Project 2015).

2.3.1 | HGDP SNP array

The HGDP SNP array data set was accessed 13 January 2017, and 
we followed the quality control steps described in Rosenberg (2006) 
to exclude mislabelled and duplicate samples. We selected seven 
populations from the HGDP based on the presence of several close 
familial relationships; five non‐African populations: Surui, Pima, 
Karitiana, Maya and Melanesian, and two African populations: Mbuti 
Pygmies and Biaka Pygmies.

To ensure a fair comparison to the allele frequency‐based in‐
ference method in PLINK, and by proxy to other commonly used 
methods, we constructed data sets where these methods have been 
shown to perform well. Specifically, we excluded individuals showing 
obvious signs of admixture (n = 16) or inbreeding (n = 2) from the se‐
lected HGDP populations. For details, see Supplemental text 2.3.1. 
This left us with a total of 142 individuals from the seven popula‐
tions: Surui (n = 20), Pima (n = 20), Karitiana (n = 21), Maya (n = 16), 
Melanesian (n = 19), Biaka Pygmies (n = 31) and Mbuti Pygmies 
(n = 15). For each of these seven populations, we constructed a final 

set of genotypes by retaining genotypes from autosomal loci with 
genotyping rate >99%, minor allele frequency (MAF) >5%, Hardy‐
Weinberg equilibrium p‐value > 10−4.

The Ro, R1 and KING‐robust kinship statistics for each of the 
2,902 within‐population pairs of individuals were then calculated 
from all sites where both individuals had non‐missing genotypes.

2.3.2 | 1,000 Genomes sequencing data
To get sequencing data from several different relationship catego‐
ries, we selected five individuals from two families in the Phase 3 
1,000 Genomes (1000G) Luhya in Webuye, Kenya (LWK) popula‐
tion: NA19027, NA19042, NA19313, NA19331, NA19334. Across 
the five individuals, there is one pair of half‐siblings (NA19027 & 
NA19042), and a separate trio of related individuals with a pair of 
full‐siblings (NA19331 & NA19334), one parent–offspring relation‐
ship (NA19313 & NA19331) and another unspecified second‐de‐
gree relationship (NA19313 & NA19334), possibly avuncular (The 
Genomes Project 2015). These stated relationships leave six unre‐
lated pairs among the five individuals.

For each pair of the five LWK individuals, we estimated the R0, 
R1 and KING‐robust kinship statistics in five different ways: (1) and 
(2) by applying the two different sequencing‐based approaches de‐
scribed above to the 1000G aligned sequence data files (~4× cover‐
age bam files), (3) by simple genotype counting based on the phased 
and high‐quality curated genotypes provided in the hg37 1000G 
VCF files, (4) by genotype counting based on the subset of sites in 
approach 3 that overlap with the Illumina 650Y sites for the HGDP 
data (to investigate ascertainment, see below) and (5) by calling gen‐
otypes from the same 1000G bam files in a basic manner meant to 
mimic data from a species with a reference genome but few other 
genetic resources and then simply counting from the called geno‐
types. For genotype calling, we used samtools mpileup (v1.3.1) to 
summarize the reads overlapping each position, and bcftools call 
(v1.3.1) to assign the most likely genotype at each position. We used 
mostly default settings; non‐default flags to samtools specified skip‐
ping indel positions. Non‐default flags to bcftools specified using the 
consensus caller. For all sequence‐based analyses (1, 2 and 5), we 
only considered reads with a minimum phred‐scaled quality score 
of 30 and bases with minimum phred‐scaled quality score of 20 and 
we restricted our analyses to genomic regions with a GEM 75mer 
mappability of 1 (Derrien et al., 2012). Notably, all the methods and 
filters used here can be applied to any study, including studies with 
only small contigs, for example made up of RAD loci, making the re‐
sults relevant beyond resequencing studies utilizing well‐assembled 
genomes.

2.4 | Assessing the effect of SNP ascertainment

To evaluate the effect of SNP ascertainment using real data, we created 
a subset of the curated genotype data from the five 1,000 Genomes 
individuals. We selected the sites that overlap with the Illumina 650Y 
array that was used for the HGDP and estimated our three relatedness 
statistics. We compared the results from this subset of HGDP sites to 
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results for the full genotype data set and also to the sequence‐based 
analyses. For an additional comparison, we also performed the same 
comparison for the methods presented in Rosenberg (2006) and 
Manichaikul et al. (2010) by constructing scatterplots by their methods.

We also investigated the effect of SNP ascertainment using the 
data simulated from a constant demography (see “Application to simu‐
lated data” for details about the simulations) and compared results for 
the full data set to results obtained by including only sites with a minor 
allele count >2 out of 40 chromosomes (MAF > 5%) in the analyses.

2.5 | Assessing the effect of a limited 
number of sites

To assess the usefulness of the new method on data sets with fewer 
genomic sites covered by sequencing reads, we constructed reduced 
size data sets, in a way that mimicked some aspects of reduced‐rep‐
resentation sequencing approaches such as RADseq. To produce each 
reduced data set, we selected a specific number of 200‐bp windows 
randomly from the mappable genomic regions and restricted our anal‐
ysis to sites falling within them. We used 10 k 50 k, 100 k and 250 k 
windows, representing ~4× sequencing coverage on 2 M, 10 M, 20 M 
or 50 M sites, respectively. All other aspects of the analyses were the 
same, expect for that for these data sets, we applied the IBS‐ and SFS‐
approaches to the complete data set, rather than splitting by chromo‐
some as we did for the full data set. We suggest analysing the complete 
data in single run if your computational resources allow it, as we no‐
ticed some upward bias in the estimated number of IBS0 sites when the 
smaller data sets were analysed separately by chromosome.

2.6 | Comparison to other methods

To get a categorization of relationships for the HGDP data set described 
above based on a standard, commonly used allele frequency‐based 
method, we first applied the allele frequency‐based relatedness estima‐
tion algorithm in PLINK (v1.9) (Chang, Chow, Tellier, Vattikuti, & Purcell, 
2015) to the individuals from each population separately to estimate 
the genomewide IBD fractions k0, k1 and k2. Next, we applied the re‐
lationship criteria proposed in table 1 of Manichaikul et al. (2010) to 
the obtained estimates: the estimated k values were combined into an 
estimate of the kinship coefficient �= k1

4
+ k2

2
, and a relationship degree 

was assigned to each pair of individuals based on comparing the esti‐
mated kinship coefficient to the criteria in the table. Parent–offspring 
and full‐siblings were differentiated based on k2 values. This provided 
us with a categorization into five categories: PO, FS, HS, C1 and UR. 
To achieve additional resolution, we further divided the last category 
(UR) into two: unknown/distantly related (UK‐DR) and unrelated (UN). 
We did this by simply extending the logic behind the criteria proposed 
above. Specifically, we set the kinship threshold between UK‐DR and 
UR to 1/213/2, which corresponds to including 4th‐ to 5th‐degree rela‐
tives in the UK‐DR category.

To assess the accuracy and precision of the new method for famil‐
ial relationship classification within the HGDP data, we examined con‐
cordance with the PLINK‐based relationship categorization described 

above. For this purpose, we assigned a relationship category to each 
pair of individuals in two ways: (1) using the statistics R0 and R1 and 
(2) using a combination of KING‐robust kinship and R0. For the former, 
we characterized each possible relationship by a single [R1, R0] point 
generated from data simulated under a demography with a constant 
population size over time, detailed in the “Application to simulated 
data” section and assigned each pair of individuals the relationship of 
the closest point using a Euclidean distance measure. For the latter, we 
used the KING‐robust kinship criteria from table 1 of Manichaikul et al. 
(2010) as above. Since this table has overlapping kinship ranges for the 
PO and FS categories, we used the R0 statistic to distinguish PO from 
FS relationships: Ignoring rare effects like germline mutations and ge‐
notyping errors the expected value for R0 for PO relatives is zero, while 
for FS the value is above 0, we used an ad hoc cut‐off of 0.02.

To estimate the statistics for identifying related individuals pro‐
posed by Rosenberg (Rosenberg, 2006) and KING (Manichaikul et al., 
2010), we note that the KING‐robust kinship estimator can (as previ‐
ously described) be calculated directly from the same nine counts, A–I 
and so can the fraction of sites IBS0 and IBS2:

We used these formulas in all our comparisons because this al‐
lowed us to estimate these statistics not only from genotype data but 
also directly from sequence data in the same manner as for R0 and R1. 
However, we note that this is our approach to estimating those statis‐
tics, and that existing tools like KING only allow users to estimate the 
statistics from genotype data.

3  | RESULTS

To assess the performance of the new method, we first applied it to sim‐
ulated genotype data to ensure that it works on sufficient data and to 
assess how sensitive it is to the underlying demographic history of the 
population the analysed samples are from. Next, we applied the new 
method to real data from different platforms to assess its performance 
on more realistic data. Finally, we performed a couple of additional anal‐
yses to access how robust the new method is to SNP ascertainment and 
to having data from only a limited number of sites available. Below we 
describe the results of all these analyses.

3.1 | Application to simulated data

We first applied the new method to simulated genotype data from 
several different relationship pairs from populations with three 

KING−robust kinship= (E−2(C+G))∕(B+D+H+F+2E)

Fraction IBS0= (C+G)∕(A+B+C+D+E+F+G+H+ I)

Fraction IBS2= (A+E+ I)∕(A+B+C+D+E+F+G+H+ I)
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different demographic histories: (1) constant Ne, (2) 10‐fold increase 
in Ne over the past 100 generations, and (3) 10‐fold decrease in Ne 
over the past 100 generations. We see very similar results across all 
three demographic scenarios, and in all cases, the R1–R0 and R1‐
KING‐robust kinship values obtained from the simulated data were 
within the theoretically derived ranges of expectations (Figure 2). 
These results demonstrate that the method works if sufficient high‐
quality genotype data are available. Furthermore, they demonstrate 
that the range of examined population size histories has a limited ef‐
fect, even though demographic history affects the allele frequency 
spectrum. In turn, this suggests that the range of expected values 
that are realistic for real data is markedly smaller than the theoreti‐
cally possible ranges also shown in the figure, which is useful for 
classification purposes.

3.2 | Application to SNP array data

Next, we applied the method to SNP array data from the Human 
Genome Diversity Project (HGDP) to see how the method works 
on real data, for which standard allele frequency‐based methods 
like PLINK are known to perform well. More specifically, we ap‐
plied it to genotype data from unadmixed and non‐inbred sam‐
ples from seven populations originating from the HGDP. This 
resulted in the R1–R0 and R1‐KING‐robust kinship plots shown 
in Figure 3a,b (for population‐specific plots, see Supplementary 
Figures S1 and S2). The true relationships for the pairs of individu‐
als are not known; we instead coloured each point in Figure 3a,b 
according to the relationship category inferred based on results 
from the standard, commonly used allele frequency‐based method 
PLINK (Figure 3c, Supplementary Figure S3). Since there are least 
15 individuals in each of the seven selected HGDP populations, 
the allele frequency estimates for these populations should be 
reasonably accurate even with some relatedness. Hence, with 
the large amount of data available in this data set, the allele fre‐
quency‐based method should provide correct inference of most, if 
not all, pairs closer than first cousins, but may not be able to fully 
distinguish first cousins from more distantly related pairs.

In Figure 3a,b, points from each relationship category clearly clus‐
ter together on both the R1–R0 plot and the R1‐KING‐robust kinship 
plot. Moreover, these clusters are located near both their theoretically 
derived ranges of expected values and the values from simulated data 
in a similar manner, the k1–k2 values for the same pairs of individu‐
als cluster close to the expected and simulated values of k1 and k2 
(Figure 3c). Almost all pairs identified as parent–offspring (PO) by the 
frequency‐based method are easy to identify as such in both the R1–
R0 plot and the R1‐KING‐robust kinship plot, which is not the case 
when only a single statistic is used (see also Supplemental Figures S1 
and S2). The same is true for full‐siblings (FS). Furthermore, points 
classified as half‐siblings/avuncular/grandparent–grandchild (HS) or 
first cousins (C1) by the frequency‐based method have a minimal over‐
lap with each other and with less‐related pairs (Figure 3a,b). The few 

F I G U R E  3   R1–R0 and R1‐KING‐robust kinship scatterplots 
for seven HGDP populations. Each coloured point represents a 
pair of individuals and is coloured according to the relationship 
category inferred using an allele frequency‐based approach. 
Coloured shaded areas/lines show the theoretically derived range 
of expected values for specific relationship categories, as in Figure 
2. Black “X”s show the values for a pair of individuals simulated 
under a constant population size, as in Figure 2. Note that in 
addition to the relationship categories for Figure 2 there is an 
additional category here representing distantly related pairs (DR). 
(a) R1–R0 plot for all pairs of individuals within each population (b) 
R1‐KING‐robust kinship plot for all pairs of individuals within each 
population. (c) Scatterplot of the two relatedness coefficients k1 
and k2 for all pairs of individuals within each population estimated 
using the allele frequency‐based approach implemented in PLINK. 
Note that the black “X”s here show simulated values for k1 and k2 
and are not inferred by PLINK, they approximately coincide with 
the expected values of k1 and k2 for each relationship category 
(Supplementary Table S1)

(a)

(b)

(c)
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pairs of individuals that were difficult to classify are the same pairs as 
those that are edge cases for the allele frequency‐based method. This 
is apparent in an R1–R0 plot of the HGDP data constructed excluding 
pairs that are closer than 0.01 to the kinship coefficient thresholds 
that the frequency‐based method used when classifying relationships 
(Supplementary Figure S4).

To quantify precision and accuracy, we examined the con‐
cordance between classifications based on the new method and 
the PLINK‐based classification. We tried two simple classification 
schemes: one based on R1–R0, which uses proximity to the values 
we obtained from simulated data from a constant Ne demography, 
and one based on KING‐robust kinship (for details see Methods and 
Materials). The results supported the visual assessment: both classi‐
fication schemes are highly concordant with the classifications ob‐
tained using the frequency‐based method (Supplemental Figure S5). 
Mean precision across all relationship categories was 0.90 for the 
R1–R0 method, vs. 0.89 for KING‐robust kinship. Mean recall across 
all relationship categories was 0.88 for R1–R0, vs. 0.89 for KING‐ro‐
bust kinship. The relationship categories for which the method has 
the lowest precision are the first cousins vs. less‐related pairs, where 
the allele frequency‐based method is also known to have a hard time 
making classifications. For PO, FS and UR alone, the mean precision 
is as high as 0.99 for R1–R0 and 0.96 for KING‐robust‐kinship, and 
the mean recall for these three categories is as high as 0.96 for R1–
R0 and 0.99 for KING‐robust kinship. Hence, the new method pro‐
vides comparable performance to a frequency‐based method when 
sufficient genotype data are available, but without the need for al‐
lele frequency information.

3.3 | Application to sequencing data

To assess how well the new method works on more limited real 
data, we applied it to sequencing data from five low‐depth (~4×) 
human genomes from the 1,000 Genomes project. Among the five 
selected samples, there is a parent–offspring pair, a pair of full‐sib‐
lings, a pair of half‐siblings, an unspecified 2nd‐degree relationship 
(e.g., avuncular), and the rest are unrelated. We estimated the R0, 
R1 and KING‐robust kinship for each pair in several ways. First, 
by using an IBS‐based approach that estimates the proportion 
all pairwise combinations of the 10 possible genotypes (Figure 4, 
“IBS”). Second, by using an SFS‐based approach where we esti‐
mated the two‐dimensional site‐frequency spectrum (2D‐SFS) of 
each pair with a bi‐allelic model and calculated R0, KING‐robust 
kinship and R1 based on this spectrum (Figure 4, “realSFS”). Both 
these approaches base their estimates on genotype likelihoods 
calculated from the sequencing read data, instead of called geno‐
types, and take the uncertainty of the underlying genotypes that 
is inherent to low‐depth sequencing data into account. The key 
difference between them is that the SFS‐based approach requires 
specification of an allele known to exist at each site, whereas the 
IBS‐based approach has no such requirement, making it more gen‐
erally applicable. The approaches also differ in how they deal with 
sites with more than two unique alleles, either excluding them 
(IBS‐based approach) or integrating over the two‐allele possibili‐
ties (SFS‐based approach), but these sites are rare (mean fraction 
as estimated by IBS: 1.8E‐6) so the impact of discarding them is 
minimal.

F I G U R E  4   Relatedness plots for all pairs among five LWK individuals from the 1000G Project. (Top) R1–R0 scatterplots for pairs of five 
LWK individuals for five different analysis approaches: (1) IBS: estimation from (~4×) 1000G bam files, (2) realSFS: site‐frequency spectrum‐
based estimation from (~4×) 1000G bam files, (3) 1000G sites: genotype counting using curated 1000G genotypes from the 1000G project, 
(4) HGDP sites: genotype counting using curated 1000G genotypes but only at sites that overlap with the Illumina 650Y array used for the 
HGDP, and (5) called genotypes: genotype counting using genotypes called de novo from (~4×) 1000G bam files. Points are coloured by their 
true relationship status, as reported by 1000G. Thin grey lines show confidence intervals (±2 SE) estimated using a chromosome jackknife. 
Coloured shaded areas/lines show the theoretically derived range of expected values for specific relationship categories from Figure 2. 
Black “X”s show the values for pairs with different relationships simulated under a constant population size, as in Figure 2. (Bottom) R1‐
KING‐robust kinship scatter plots for the same data sets, confidence intervals and expected ranges are constructed in the same way
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With the values estimated using the SFS‐based approach, it is 
possible to visually classify of all the pairs to their relationship cat‐
egory within the set of close familial relationships (PO, FS, HS or 
UR), or by using one of the classification methods introduced ear‐
lier. Results for the IBS‐based approach were similar, but unrelated 
individuals have a slight decrease in R0 and a slight increase in R1 
and KING‐robust kinship, compared to the SFS‐based approach. 
This makes unrelated individuals appear slightly more related 
than expected for unrelated individuals from a homogenous pop‐
ulation. However, despite this bias, it is still possible to correctly 
classify of all the pairs to their relationship category, suggesting 
that the IBS‐based approach can be used when not enough infor‐
mation is available for the SFS‐based approach. The chromosome 
block‐jackknife estimates of uncertainty for the genotype likeli‐
hood‐based methods were small, and varied by relationship type, 
with the pair of full‐siblings having the most uncertainty in R0, R1 
and KING‐robust kinship.

We also calculated the three statistics from the high‐quality 
phased genotypes for the same five individuals available from the 
1,000 Genomes Project Phase 3 (Figure 4, “1000G sites”) to see 
how well the two genotype likelihood‐based approaches applied to 
low‐depth sequencing data perform compared to direct calculations 
from high‐quality genotype data for the same samples. In this com‐
parison, results obtained by using the genotype likelihood‐based ap‐
proaches applied to low‐depth sequencing data are close to those 
obtained from the high‐quality genotypes for all the pairs (Figure 4).

Finally, we also made R1–R0 and R1‐KING‐robust kinship 
plots based on genotypes that we obtained through a standard 
genotype calling procedure from the raw read data. We did this 
to investigate whether the genotype likelihood‐based approaches 
are necessary or one could just as well use genotypes called from 
the ~4× data. As expected, genotype calling had a large negative 
effect on the outcome; in the resulting R1–R0 and R1‐KING‐ro‐
bust kinship plots, the half‐siblings appear within the range of ex‐
pected values for first cousins and both the parent–offspring and 
full‐sibling pairs appear within the range of expected values for 
half‐siblings (Figure 4, “called genotypes”). These results demon‐
strate the pitfalls of basing any relationship inferences, including 
R1–R0 and R1‐KING‐robust kinship plots, on genotypes called 
from low‐depth data. Notably, this is also the case for the meth‐
ods presented in Rosenberg (2006) and Manichaikul et al. (2010) 
(Figure 5, "called genotypes"). This clearly demonstrates that, with 
~4× sequencing data, calling genotypes without external informa‐
tion, such as an imputation reference panel, is not a good alter‐
native to a genotype likelihood‐based approach. This implies that 
software packages designed to work only on genotype data, such 
as KING, should not be used on data like this.

3.4 | Assessing the effect of SNP ascertainment

To assess the effect of SNP ascertainment, we applied the new method 
to three different subsets of data from the five 1,000 Genomes 

F I G U R E  5   Results from two alternate frequency‐free methods to different subsets and types of data from five 1000 Genomes samples. 
(Top) Results from applying the plotting approach from Rosenberg ( 2006) to pairs of the same five LWK individuals for five different 
analysis approaches: 1) IBS: estimation from (~4×) 1000G bam files, 2) realSFS: site‐frequency spectrum based estimation from (~4×) 1000G 
bam files, 3) 1000G sites: genotype counting using curated 1000G genotypes from the 1000G project, 4) HGDP sites: genotype counting 
using curated 1000G genotypes at sites that overlap with the Illumina 650Y array used for the HGDP and 5) genotype counting using called 
genotypes: genotype called de novo from (~4×) 1000G bam files. Pairs are coloured by their true relationship status, as in Figure 3. Fraction 
IBS0/IBS2 are the overall fraction of sites that are IBS0/IBS2, res pectively. Grey lines centred on each point show confidence intervals (±2 
SE) based on a chromosome jackknife. (Bottom) Results from applying the KING‐robust based approach to the same pairs of LWK individuals 
using the same five different analysis methods as above. The horizontal black lines show the kinship thresholds used to distinguish unrelated 
(UR), first cousins (C1) half‐siblings (HS), full‐siblings (FS) and (PO) following (Manichaikul et al., 2010) from bottom to top, respectively. Thin 
grey lines centred on each point show confidence intervals (±2 SE) estimated using chromosome jackknife
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individuals. The results for each of the three ascertainment schemes; 
all sites covered by sequencing data, 1,000 Genomes release sites and 
Illumina 650Y SNP array sites are similar (left four panels, Figure 4), 
showing SNP ascertainment does not have a large effect.

For comparison, we performed the same assessment of the meth‐
ods presented in Rosenberg (2006) and Manichaikul et al. (2010) by 
constructing scatterplots of the same type as those shown in their pa‐
pers (Figure 5). This revealed that both these other methods are much 
more affected by ascertainment than the method proposed here. In 
particular, the Rosenberg method is affected on both its x‐axis (IBS0) 
and its y‐axis (IBS2), which means that the expected region of the plot 
for each relationship will be different for different data sets (top row 
of Figure 5). The method presented in Manichaikul et al., 2010 is af‐
fected by the SNP ascertainment mainly on its x‐axis (IBS0, bottom 
row of Figure 5). Therefore, the ascertainment mainly affects the abil‐
ity to distinguish between parent–offspring and full‐siblings, since the 
y‐axis, which is only slightly affected by ascertainment, is the kinship 
coefficient, which can be used to distinguish between most close rela‐
tionships except for parent–offspring and full‐siblings. The x‐axis, IBS0, 
is included in part to help make the distinction between PO and FS 
(Manichaikul et al., 2010), but this ability is clearly affected by SNP as‐
certainment (bottom row of Figure 5).

To further explore the effect of SNP ascertainment on the new 
method, we also performed analyses of the previously mentioned 
simulated of data from a population with a constant population 
size. This time we only analysed SNPs with MAF above 5% and 
compared the results to the results for the full data set. This con‐
firmed the results from the real data analyses: SNP ascertainment 
does change the values a bit compared to when all sites are anal‐
ysed, however the change is limited (Figure 2). This is well in line 

with the fact that we got very similar results for the simulated data 
from three populations with quite different population size histo‐
ries and consequently different allele frequency spectra. Indeed, 
the effect of population size decline is similar to that of ascertaining 
for common SNPs, which makes sense because population decline 
is known to lead to a skew in the allele frequency spectrum towards 
more common SNPs.

3.5 | Assessing the effect of a limited 
number of sites

Genomewide shotgun sequencing data, as is available for the 
1000G individuals, is not available for all species. Studies may 
instead have RADseq or similar data, covering only a fraction of 
genomic sites. To assess to what extent the new method can be 
used to analyse such data sets, we performed analyses of subsets 
of the 1000G data, constructed to mimic RAD sequencing data. 
Specifically, we analysed four subsets that consisted of 10 k, 50 k, 
100 k and 250 k, 200 bp windows, representing 2 M, 10 M, 20 M 
or 50 M sites, respectively. For all but the smallest data subset, the 
point estimates were similar to those obtained using the full data 
set, showing the method is applicable when reducing the number 
of sites even with ~4× coverage (Figure 6, supplemental file 1). This 
suggests that even with the reduced number of sites tested, there 
was sufficient data to characterize the genomewide mean IBD 
fractions for both closely related and unrelated pairs. The uncer‐
tainty in the estimates, as estimated by a chromosome jackknife, 
increased with fewer sites, but the effect was limited, suggesting 
the biological variation in IBD sharing across chromosomes was 
larger than sampling variance across the examined sites.

F I G U R E  6   The effect on estimates of R0, R1 and KING‐robust kinship from reducing the number of sites covered by sequencing data 
from the same five LWK individuals as in Figures 4 and 5. Each point shows the point estimate and error bars show ±2 SE estimated using 
chromosome jackknife. Each column shows results for different numbers of examined basepairs, including non-variable sites. Pairs of 
individuals are coloured by their true relationship. These plots show the results of the IBS‐based method, see supplemental for results from 
the SFS‐based approach. Coloured shaded areas/lines show the theoretically possible range of expected values for specific relationship 
categories from Figure 2 and black “X”s show the values for different relationship pairs of individuals simulated under a constant population 
size, as in Figure 2
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4  | DISCUSSION

We have presented a simple new method for inferring if and how 
two individuals are related based solely on genetic data from the 
two target individuals. We demonstrated two ways in which it can 
also be applied directly to sequencing data via genotype likelihoods. 
And importantly, we showed that, the method provides useful re‐
sults when applied to ~4× sequencing data as well as RADseq like 
subsets of such data. All of this combined implies that—unlike previ‐
ous methods—this new method can be used even if all you have is 
low‐depth sequencing data from a few individuals from a species 
without a reference genome.

4.1 | Comparison to similar methods

The new method is based on plotting two statistics, R0 and KING‐ro‐
bust kinship against a third, new statistic R1. The R0 statistic similar 
to the test statistic proposed by Lee (2003) to test for relatedness. 
The only differences are that the numerator and denominator are 
flipped and that E, the proportion of sites where both individuals 
are heterozygous, is included in the denominator in the statistic de‐
fined by Lee but absent in R0. R0 is also similar to the pairwise pop‐
ulation concordance (PPC) statistic in PLINK (Purcell et al., 2007), a 
test of if the genotypes of a pair of individuals have more IBS0 sites 
than two unrelated individuals with the same ancestry are expected 
to have, signalling they have different ancestries. The KING‐robust 
kinship estimator was proposed by Manichaikul et al. (2010) and 
implemented for genotype data in the program KING. Here, we ex‐
tend it to estimation directly from sequencing data. Notably, our re‐
sults suggest that this extension is vital for successful application to 
low‐depth sequencing data, because estimates based on genotypes 
called from low‐depth sequencing data are very poor (rightmost 
panels of Figures 4 and 5), which makes programs like KING inap‐
propriate to apply to such data. This extension can also be used for 
similar pairwise statistics and thus makes existing methods based 
on such statistics, like KING‐robust kinship, more widely applicable.

However, this extension is not the only contribution of this study. 
Another key new contribution is to provide an alternative to the IBS0 
statistic (the proportion of sites where the two individuals share zero 
alleles IBS) that was utilized by Rosenberg (2006) and Manichaikul et 
al. (2010). As we have shown, the fraction of sites that are IBS0 or 
IBS2 is very sensitive SNP ascertainment, meaning that results are 
only comparable within each ascertainment scheme. The method 
from Rosenberg (2006), where IBS0 is combined with IBS2, is dif‐
ficult, if not impossible, to use for relatedness inference in general 
because the fraction of sites that are IBS2 and IBS0 varies so wildly 
across different ascertainment schemes, such as between SNP ar‐
rays and sequencing data. On the other hand, KING‐robust kinship 
is still very useful, but it loses the ability to distinguish between par‐
ent–offspring and full‐siblings, as IBS0 was used for this. Due to this 
sensitivity to ascertainment, samples cannot be analysed in isolation 
and must be placed in the context of other samples with known re‐
lationships and the same ascertainment scheme. This requirement 

makes it difficult to apply these previous methods to ancient humans 
or other species with limited sample sizes.

In contrast, the ability to identify relatives based on expected values 
is maintained in the new method, regardless of ascertainment scheme 
due to the use of R0, instead of IBS0, which makes the new method 
robust to SNP ascertainment. Parent–offspring pairs tend to have an R0 
estimate extremely close to 0, making them particularly easy to iden‐
tify via the R1–R0 plot. The R1‐KING‐robust kinship plot, on the other 
hand, has the appealing aspect that the kinship axis has a biological in‐
terpretation, defined as the probability that two alleles sampled at ran‐
dom from two individuals are identical by descent. Hence, the two plots 
types, R1–R0 and R1‐KING‐robust kinship, each have their advantages. 
Finally, it is worth noticing that the two plots types seem to work better 
than a range of other plots constructed from similar ratio statistics that 
we explored (Supplementary Figure S6).

4.2 | Limitations and applications

While the new method provides substantial advantages over pre‐
vious methods in situations with limited data, it does have some 
limitations. First, like most other relatedness inference methods, 
such as PLINK, the proposed method assumes that the individu‐
als are not inbred and that they originate from the same homog‐
enous population. And like many other relationship inference 
methods, it is not necessarily robust to violations of these as‐
sumptions. Previous studies have shown the effect of population 
structure and admixture on relatedness inference is complex and 
can potentially lead to bias in either direction depending on the 
circumstances, and this is true even for KING, which was devel‐
oped to be robust to population structure (Conomos et al., 2016; 
Ramstetter et al., 2017; Thornton et al., 2012). Specific methods 
have been developed to correct for admixture when the allele fre‐
quencies in the admixing populations are known (e.g., Thornton 
et al., 2012; Moltke & Albrechtsen, 2014), or enough samples are 
available (Conomos et al., 2016; Dou et al., 2017). But since these 
methods work by exploiting knowledge about allele frequencies 
or access to many samples for their correction, the pairwise R0, 
R1 and KING‐robust kinship statistics cannot be easily corrected 
in a similar manner. However, we note that Lee (2003) showed 
that the statistic he proposed for testing for relatedness can also 
be used to detect if two unrelated samples are not from the same 
homogeneous population. If this is the case, Lee’s statistic will be 
significantly smaller than 2/3; and equivalently R0 will be signifi‐
cantly above 0.5, which may be helpful when interpreting R0, R1, 
KING‐kinship plots in the presence of admixture or population 
structure more generally. Regarding inbreeding, one potential 
way to assess if one of the individuals is inbred is to compare 
heterozygosities across individuals; non‐inbred and non‐admixed 
individuals from the same population should have similar hete‐
rozygosity, so marked heterozygosity differences can be a warn‐
ing signal.

A second limitation, which is shared with other relatedness esti‐
mation methods, is that there is significant biological variation in the 
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amount of IBD sharing between relatives with the same pedigree 
relationship due to randomness inherent in the process of recombi‐
nation (Hill, 1993; Rasmuson, 1993). For humans, this means that a 
pair of relatives, say first cousins, will sometimes share less of their 
genomes IBD than another pair with a more distant pedigree rela‐
tionship, say second cousins. This makes classification into specific 
relationships difficult. The degree of biological variation in IBD shar‐
ing between relatives varies across species and can even differ be‐
tween sexes due to sex‐specific recombination patterns. This makes 
it difficult to provide general guidance appropriate for all species. 
In general, species with more chromosomes and more recombina‐
tion will have less variation in IBD sharing for a defined pedigree 
relationship, making it easier to distinguish among various potential 
relationship categories. To quantify this uncertainty, we propose a 
chromosomal bootstrap procedure that can be used if reads can be 
assigned to chromosomes.

Biological variation in IBD sharing is also related to the es‐
timation and interpretation of confidence intervals on statistics 
like R0, R1 and KING‐robust kinship. Relatedness and limited re‐
combination also cause correlation between sites in the genome, 
due to shared IBD segments and LD. This correlation between 
sites increases the variance in the estimates of these statistics 
in a way that can be difficult to fully account for when comput‐
ing confidence intervals. For statistics that test for introgression 
such as the D‐statistic (Patterson et al. 2012), where the main 
concern is correlation due to LD, a block jackknife, leaving out 
contiguous blocks (e.g., 5 Mb) is a common approach. When con‐
sidering relatedness, we want to compare our estimates to the 
expectations of each relationship category. Since shared IBD seg‐
ments can be much longer than the range of LD we propose a 
more appropriate chromosome jackknife. In either case, a jack‐
knife (or bootstrap) over single sites will fail to provide a con‐
fidence interval that accounts for the non‐independence of the 
sites. For more discussion on this topic, see Thompson (2013). 
Unfortunately, this means that it is difficult to provide the most 
appropriate confidence intervals when no information about ge‐
nomic positions is available.

Despite these limitations, we believe that the results presented 
here suggest the new method constitutes a helpful new tool for re‐
latedness inference for studies with limited data. Identifying related 
samples is a crucial step in nearly any genetic analysis and can also 
reveal other problems such as duplicate samples or cross‐contam‐
ination of genetic material. Removing the requirements to specify 
allele frequencies and to have accurate genotypes has the poten‐
tial allow the identification of relatives even in small studies of non‐
model species or ancient samples. These types of studies do not 
currently have many good options to address relatedness.
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1 Supplemental Figures
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Figure S1: Scatterplot of R0 and R1 per HGDP population. Each pair of individuals within
each population is represented by a point, which is colored according to the relationship category
inferred using an allele frequency-based approach. The coloured shaded areas (sometimes just
lines) show theoretically derived ranges of the joint expectation for specific relationship categories,
as in Figures 2 and 3 in the main text. Black ’X’s show values for pairs of individuals simulated
under a constant Ne for each relationship category, as in Figure 2 of the main text. PO = parent-
offspring, FS = full sibling, HS = half sibling, C1 = first cousin, DR = unknown relationship /
distantly related, UN = unrelated.
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Figure S2: Scatterplot of R1 and KING-robust kinship per HGDP population. Each pair of
individuals within each population is represented by a point, which is colored according to the
relationship category inferred using an allele frequency-based approach. The coloured shaded
areas (sometimes just lines) show theoretically derived ranges of the joint expectation for specific
relationship categories, as in Figures 2 and 3 in the main text. Black ’X’s show values for pairs
of individuals simulated under a constant Ne for each relationship category, as in Figure 2 of the
main text. PO = parent-offspring, FS = full sibling, HS = half sibling, C1 = first cousin, DR =
unknown relationship / distantly related, UN = unrelated.
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Figure S3: Scatterplot of the two relatedness coefficients k1 and k2 (denoted Z1 and Z2 in the output
of PLINK) for each relationship category in the HGDP data. Estimates of the two relatedness
coefficients are from the allele frequency-based approach implemented in PLINK. Each pair of
individuals within each population is represented by a point, here they are paneled by the inferred
relationship category: PO = parent-offspring, FS = full sibling, HS = half sibling, C1 = first
cousin, DR = unknown relationship / distantly related, UN = unrelated. Also see figure 3 in the
main text.
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Figure S4: Pairwise scatterplots of R1, R0, and KING-robust kinship, and also k1 vs k2 when
difficult to call relationships are excluded. Each pair of individuals within each population is
represented by a point, which is colored according to the relationship category inferred using an
allele frequency-based approach. Shaded areas and lines show the expected ranges for specific
relationship categories, as in Figures 2 and 3 in the main text. PO = parent-offspring, FS = full
sibling, HS = half sibling, C1 = first cousin, DR = unknown relationship / distantly related, UN
= unrelated. Relationships were deemed difficult to call when the PLINK kinship was within 0.02
of the cutoff between two relationship categories.
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Figure S5: Confusion matrices for two classification schemes applied to the HGDP data. These
matrices show concordance with the PLINK-based classification scheme described in the main text.
Left: [R0, R1] Euclidean distance to data simulated under a constant Ne. Right: KING-robust
kinship using the kinship criteria from Manichaikul et al. (2010), plus using R0 to distinguish PO
from FS.

Tables below show the relationship-specific precision and recall for each classification.

precision recall support

UN 0.99 0.87 862
UK/DR 0.59 0.85 213
C1 0.85 0.87 194
HS 0.87 0.94 101
FS 1.00 1.00 31
PO 1.00 1.00 50
avg/total 0.90 0.88 1451

precision recall support

UN 0.92 0.97 862
UK/DR 0.72 0.64 213
C1 0.91 0.77 194
HS 0.83 0.94 101
FS 0.97 1.00 31
PO 1.00 1.00 50
avg/total 0.89 0.89 1451
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Figure S6: Scatterplots of R0, R1, KING-robust kinship, FST , and R4 for pairs of individuals within
the selected HGDP populations. Each pair of individuals within each population is represented by
a point, which is colored according to the relationship category inferred using an allele frequency-
based approach. The coloured shaded areas (sometimes just lines) show theoretically derived ranges
of the joint expectation for specific relationship categories, as in Figures 2 and 3 in the main text.
Histograms of each statistic are on the diagonal. It is evident that pairs of statistics reduce the
overlap in expected ranges between relationship categories. Also presented here are two related
ratios not discussed in the main text: FST = 2C+2G−E

2C+2G+B+D+E+F+H and R4 = E−2C−2G
2C+2G+B+D+F+H .

Black ’X’s show values for pairs of individuals simulated under a constant Ne for each relationship
category, as in Figure 2 of the main text. PO = parent-offspring, FS = full sibling, HS = half
sibling, C1 = first cousin, DR = unknown relationship / distantly related, UN = unrelated.
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2 Supplemental Texts

2.1 Text S1: Derivations of the expectations of R0, R1, and KING-
robust kinship

We will here derive expressions for R0, R1 and KING-robust kinship for a range of different
pairwise familial relationships. Based on these expressions we will then determine the joint range
of expected values for R0 and R1 as well as R0 and KING robust kinship shown in figure 2 in the
main text.

2.1.1 Assumptions and notation

In the below derivations will assume that we are analyzing data from two individuals, 1 and 2
that are not inbred and that are from the same homogeneous population. Additionally, we will
assume that we have genotype data for n sites from both individuals and that all sites n sites are in
Hardy-Weinberg equilibrium. In terms of notation, we will denote the two individuals’ genotypes
at given site s as g1 and g2, with g1,g2 ∈ {0, 1, 2} corresponding to the number of copies of a
specified allele (e.g., the derived allele) carried by individual 1 and 2, respectively. Also, we will
denote the population frequency of the specified allele at site s as f . Furthermore, we will use the
capital letters A through I to denote the probability of each of the nine different genotype pairs as
shown in figure 1 in the main text. So e.g., A denotes the probability that both individuals have
the genotype 0 at a site. Finally, we will use k0, k1, and k2 to denote the probability that the two
individuals share 0, 1 or 2 alleles identical-by-descent (IBD), respectively. The expected values of
K = (k0, k1, k2) for different familial relationship can be seen in table S1.

Table S1: Expected K = (k0, k1, k2) for different relationship categories.
Relationship k0 k1 k2

Monozygotic twins (MZ) 0 0 1

Parent-offspring (PO) 0 1 0

Full siblings (FS) 1
4

1
2

1
4

Half siblings/avuncular/grandparent-grandchild (HS) 1
2

1
2 0

First cousins (C1) 3
4

1
4 0

Second cousins (C2) 15
16

1
16 0

Unrelated (UR) 1 0 0

2.1.2 Derivations of A through I

To derive the expected value of R0, R1 and KING-robust kinship for different familial relationship
pairs, we first derive expressions for A to I, see also Toro et al. (2011) for a similar set of derivations,
but notice they have a slightly different definition of k1. We note that in general it must hold that
in site s:

P (g1, g2|K = (k0, k1, k2), f) = P (g1|f)P (g2|g1,K = (k0, k1, k2), f)

= P (g1|f)
∑

z∈{0,1,2}
P (Z = z|K = (k0, k1, k2))P (g2|g1, Z = z, f)

= P (g1|f)
∑

z∈{0,1,2}
kzP (g2|g1, Z = z, f)

where Z is an indicator of whether the two individuals share 0, 1 or 2 alleles IBD in a given site.
Since we are assuming that the two individuals 1 and 2 are not inbred and that all sites are in
Hardy-Weinberg equilibrium, the values of P (g1|f), P (g2|g1, Z = 0, f), P (g2|g1, Z = 1, f) and
P (g2|g1, Z = 2, f) must be those given in tables S2 to S5.
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Based on this, we can derive expressions for A through I for an arbitrary degree of relatedness
specified by K:

A = P (g1 = 0, g2 = 0|K = (k0, k1, k2), f)

= P (g1 = 0|f)
∑

z∈{0,1,2}
kzP (g2 = 0|g1 = 0, Z = z, f)

= f2(k0f
2 + k1f + k21)

= k0f
4 + k1f

3 + k2f
2

B = P (g1 = 1, g2 = 0|K = (k0, k1, k2), f)

= P (g1 = 1|f)
∑

z∈{0,1,2}
kzP (g2 = 0|g1 = 1, Z = z, f)

= 2f(1− f)(k0f
2 + k1

f

2
+ k20)

= k02f
3(1− f) + k1f

2(1− f)

C = P (g1 = 2, g2 = 0|K = (k0, k1, k2), f)

= P (g1 = 2|f)
∑

z∈{0,1,2}
kzP (g2 = 0|g1 = 2, Z = z, f)

= (1− f)2(k0f
2 + k10 + k20)

= k0f
2(1− f)2

D = P (g1 = 0, g2 = 1|K = (k0, k1, k2), f)

= P (g1 = 0|f)
∑

z∈{0,1,2}
kzP (g2 = 1|g1 = 0, Z = z, f)

= f2(k02f(1− f) + k1(1− f) + k20)

= k02f
3(1− f) + k1f

2(1− f)

= B

E = P (g1 = 1, g2 = 1|K = (k0, k1, k2), f)

= P (g1 = 1|f)
∑

z∈{0,1,2}
kzP (g2 = 1|g1 = 1, Z = z, f)

= 2f(1− f)(k02f(1− f) + k1
1

2
+ k21)

= k04f
2(1− f)2 + k1f(1− f) + k22f(1− f)

F = P (g1 = 2, g2 = 1|K = (k0, k1, k2), f)

= P (g1 = 2|f)
∑

z∈{0,1,2}
kzP (g2 = 1|g1 = 2, Z = z, f)

= (1− f)2(k02f(1− f) + k1f + k20)

= k02f(1− f)3 + k1f(1− f)2

9
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G = P (g1 = 0, g2 = 2|K = (k0, k1, k2), f)

= P (g1 = 0|f)
∑

z∈{0,1,2}
kzP (g2 = 2|g1 = 0, Z = z, f)

= f2(k0(1− f)2 + k10 + k20)

= k0f
2(1− f)2

= C

H = P (g1 = 1, g2 = 2|K = (k0, k1, k2), f)

= P (g1 = 1|f)
∑

z∈{0,1,2}
kzP (g2 = 2|g1 = 1, Z = z, f)

= 2f(1− f)(k0(1− f)2 + k1
(1− f)

2
+ k20)

= k02f(1− f)3 + k1f(1− f)2

= F

I = P (g1 = 2, g2 = 2|K = (k0, k1, k2), f)

= P (g1 = 2|f)
∑

z∈{0,1,2}
kzP (g2 = 2|g1 = 2, Z = z, f)

= (1− f)2(k0(1− f)2 + k1(1− f) + k21)

= k0(1− f)4 + k1(1− f)3 + k2(1− f)2

Table S2: P (g1|f).
P (g1 = 0|f) P (g1 = 1|f) P (g1 = 2|f)

f2 2f(1− f) (1− f)2

Table S3: P (g2|g1, Z = 0, f).
g2 = 0 g2 = 1 g2 = 2

g1 = 0 f2 2f(1− f) (1− f)2

g1 = 1 f2 2f(1− f) (1− f)2

g1 = 2 f2 2f(1− f) (1− f)2

Table S4: P (g2|g1, Z = 1, f).
g2 = 0 g2 = 1 g2 = 2

g1 = 0 f (1− f) 0

g1 = 1 f
2

1
2

1−f
2

g1 = 2 0 f 1− f
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Table S5: P (g2|g1, Z = 2, f).
g2 = 0 g2 = 1 g2 = 2

g1 = 0 1 0 0

g1 = 1 0 1 0

g1 = 2 0 0 1

2.1.3 Derivation of the expected values of R0

With the above expressions for A through I, we can derive an expectation of R0 for different
relationships. We do this by first noting that:

R0 =
C +G

E

=
2C

E

=
2(k0f

2(1− f)2)

k04f2(1− f)2 + k1f(1− f) + k22f(1− f)

=
2k0f(1− f)

k04f(1− f) + k1 + 2k2

Inserting the expected values of k0, k1 and k2 from table S1 into this formula we get that if
individuals 1 and 2 are a PO pair R0 is expected to be

R0PO =
2× 0f(1− f)

0× 4f(1− f) + 1 + 2× 0

=
0

1
= 0

Similarly, for monozygotic twins (MZ), full siblings (FS), half siblings/avuncular/grandparent-
grandchild (HS), first cousins (C1), second cousins (C2) and unrelated (UR) we expect R0 to
be:

R0MZ =
2× 0f(1− f)

0× 4f(1− f) + 0 + 2× 1

= 0

R0FS =
2× 1

4f(1− f)
1
4 × 4f(1− f) + 1

2 + 2× 1
4

=
1
2f(1− f)

f(1− f) + 1

=
f(1− f)

2f(1− f) + 2

which for f ∈]0, 1[ has the range ]0, 1
10 ].

R0HS =
2× 1

2f(1− f)
1
2 × 4f(1− f) + 1

2 + 2× 0

=
f(1− f)

2f(1− f) + 1
2
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which for f ∈]0, 1[ has the range ]0, 1
4 ].

R0C1 =
2× 3

4f(1− f)
3
4 × 4f(1− f) + 1

4 + 2× 0

=
3
2f(1− f)

3f(1− f) + 1
4

which for f ∈]0, 1[ has the range ]0, 3
8 ].

R0C2 =
2× 15

16 × f(1− f)
15
16 × 4f(1− f) + 1

16 + 2× 0

=
30f(1− f)

60f(1− f) + 1

which for f ∈]0, 1[ has the range ]0, 15
32 ].

R0UR =
2× 1× f(1− f)

1× 4f(1− f) + 0 + 2× 0

=
2f(1− f)

4f(1− f)

=
1

2

which is constant independent of the value for f ∈]0, 1[.

2.1.4 Derivation of the expected values of R1

With the above expressions for A through I we also get that

R1 =
E

B + C +D + F +G+H

=
E

2B + 2C + 2F

=
k04f

2(1− f)2 + k1f(1− f) + k22f(1− f)

2(k02f3(1− f) + k1f2(1− f)) + 2(k0f2(1− f)2) + 2(k02f(1− f)3 + k1f(1− f)2)

=
k04f

2(1− f)2 + k1f(1− f) + k22f(1− f)

k0(4f3(1− f) + 2f2(1− f)2 + 4f(1− f)3) + k1(2f2(1− f) + 2f(1− f)2)

=
k04f(1− f) + k1 + k22

k0(4f2 + 2f(1− f) + 4(1− f)2) + k1(2f + 2(1− f))

=
k04f(1− f) + k1 + k22

k0(4− 6f(1− f)) + k12

Inserting the expected values of k0, k1 and k2 from table S1 into this formula we get that if
individuals i1 and i2 are a PO pair R1 is expected to be

R1PO =
0× 4f(1− f) + 1 + 0× 2

0× (4− 6f(1− f)) + 1× 2

=
1

2

Similarly, for MZ, FS, HS, C1, C2 and UR we expects R1 to be:

12
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R1MZ =
0× 4f(1− f) + 0 + 1× 2

0× (4− 6f(1− f)) + 0× 2
= ∞

R1FS =
1
4 × 4f(1− f) + 1

2 + 1
4 × 2

1
4 × (4− 6f(1− f)) + 1

2 × 2

=
f(1− f) + 1

2− 3
2f(1− f)

which for f ∈]0, 1[ has the range ] 12 ,
10
13 ].

R1HS =
1
2 × 4f(1− f) + 1

2 + 0× 2
1
2 × (4− 6f(1− f)) + 1

2 × 2

=
2f(1− f) + 1

2

3− 3f(1− f)

which for f ∈]0, 1[ has the range ] 16 ,
4
9 ].

R1C1 =
3
4 × 4f(1− f) + 1

4 + 0× 2
3
4 × (4− 6f(1− f)) + 1

4 × 2

=
3f(1− f) + 1

4
7
2 − 9

2f(1− f)

which for f ∈]0, 1[ has the range ] 1
14 ,

8
19 ].

R1C2 =
15
16 × 4f(1− f) + 1

16 + 0× 2
15
16 × (4− 6f(1− f)) + 1

16 × 2

=
60
16f(1− f) + 1

16
62
16 − 90

16f(1− f)

which for f ∈]0, 1[ has the range ] 1
62 ,

32
79 ]

R1UR =
1× 4f(1− f) + 0 + 0× 2

1× (4− 6f(1− f)) + 0× 2

=
4f(1− f)

4− 6f(1− f)

=
2f(1− f)

2− 3f(1− f)

which for f ∈]0, 1[ ranges from ]0, 2
5 ].

2.1.5 Derivation of the expected values of the KING-robust kinship estimator

Using the above expressions for A through I, the KING-robust kinship estimator (Manichaikul
et al., 2010) can be re-written as:
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KING-robust kinship =
E − 2(C +G)

B +D +H + F + 2E

=
E − 4C

2(B + F + E)

=
k1f(1− f) + k22f(1− f)

2(k02f(1− f) + k12f(1− f) + k22f(1− f))

=
k1f(1− f) + k22f(1− f)

4f(1− f)(k0 + k1 + k2)

=
k1f(1− f) + k22f(1− f)

4f(1− f)

=
k1
4

+
k2
2

Hence, as expected, the expectation of the KING-robust kinship estimator is k1

4 + k2

2 (which is the
definition of kinship) regardless of the allele frequencies. Thus using the values in table S1 this
means that the expected KING-robust kinship estimate is 1

2 for MZ, 1
4 for both PO pairs and full

siblings, 1
8 for HS, 1

16 for C1, 1
64 for C2 and 0 for unrelated pairs.

2.1.6 Joint ranges of R1 and R0

Above we derived the ranges of the expectation of each of R1 and R0 for different relationships.
To get the joint ranges of the two, we note that the two ratios are not independent, because E is
a part of both ratios. More specifically, (R1,R0) as a function of f ∈]0, 1[ for each of the different
relationships considered here is shown by the solid lines in figure 2A in the main text. As this figure
reveals, these are either single points (for PO) or concave, which means that for a combination of
frequencies - and thus when more sites than one is considered - the ranges will be in the colored
ranges inside the solid lines. It is important to note that these are simply ranges of expectations,
because they are based on expected values of k0, k1 and k2 for the different relationship. Hence,
the realized values for a given pair will not necessarily lie inside the ranges shown as the realized
values of k0, k1 and k2 may differ from the expected values because the realized values for any
related pair – except for parent off-spring and monozygotic twins – will vary around the expected
values of k0, k1, and k2 due to the randomness in the recombination process. E.g. a pair of half
siblings are expected to have (k0, k1, k2)=(0.5, 0.5, 0) but can in practice end up with e.g. (k0,
k1, k2)=(0.55, 0.45, 0) or (k0, k1, k2)=(0.45, 0.55, 0). This will lead to values outside the expected
range. In other words, the expectations derived here are expected values for our statistics in the
same way as the values in table S1 are the expected values for K=(k0, k1, k2).

2.1.7 Joint ranges of R1 and the KING-robust kinship estimator

Above we also derived the ranges of the expectation of each R1 and KING-robust for different
relationships. We get the joint ranges from figure 2B in the main text by simply combining these.
Again, it is important to note that these are simply ranges of expectations, because they are based
on expected values of k0, k1 and k2 for the different relationship. Hence, the realized values for a
given pair will not necessarily lie inside the ranges shown as the realized values of k0, k1 and k2
may differ from the expected values.
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2.2 Text S2: The IBS method
In this section, we will describe technical details of the IBS method introduced in the main text.
Specifically, this method aims to infer the frequency of different genotype combinations, p, for a
pair of individuals, 1 and 2 from directly from sequencing read data. This is done using genotype
likelihoods, i.e. probabilities of the read data given different genotypes, for each of the two in-
dividuals. These genotype likelihoods better reflect the uncertainty of the true genotypes that is
inherent to low depth sequencing data. Briefly, this is accomplished by summing over all possible
genotypes of the two individuals and weighting the probabilities using the corresponding genotype
likelihoods. To fully describe the IBS method, we introduce the following notation:

• S denotes the number of sites

• Xi = (X1
i , X

2
i , ..., X

S
i ) denotes the sequencing read data for individual i at the S sites

• G = {AA,AC,AG,AT,CC,CG,CT,GG,GT, TT} denotes the set of possible genotypes

• Qs
i denotes the (unknown) genotype of individual i at site s with Qs

i ∈ G

• P (Xs
i |Qs

i = qi) is the likelihood of the genotype qi for individual i at site s

• p is the vector of the frequencies of the genotype combinations that we aim to estimate

With this notation it must hold that:

P (X1, X2|p) =
S∏

s=1

P (Xs
1 , X

s
2 |p)

=
S∏

s=1

∑

(q1,q2)∈G×G
P (Xs

1 , X
s
2 |(Qs

1, Q
s
2) = (q1, q2))× P ((Qs

1, Q
s
2) = (q1, q2)|p)

=
S∏

s=1

∑

(q1,q2)∈G×G
P (Xs

1 |Qs
1 = q1)× P (Xs

2 |Qs
2 = q2)× P ((Qs

1, Q
s
2) = (q1, q2)|p)

where the genotype likelihoods for the two individuals can be calculated using tools like ANGSD
(Korneliussen et al., 2014) and where the probability of each possible genotype combination,
P ((Qs

1, Q
s
2) = (q1, q2)|p), is simply the element of p that corresponds to this genotype combination.

This equation provides us with a likelihood function for the parameter, p, and we use this likelihood
function to perform maximum likelihood estimation of p. In practice, this is done using an EM-
algorithm which we have added to the software tool ANGSD with the name IBS.

We note that we have also added other similar models to ANGSD. The only difference between
these and the model presented here is that fewer parameters are estimated, i.e. p is a shorter vector,
and that P ((Qs

1, Q
s
2) = (q1, q2)|p) is defined differently as a consequence. Those other models are

not used in this paper.
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2.3 Text S3: Supplemental Methods
2.3.1 Individuals excluded due to signs of admixture or inbreeding

We ran ADMIXTURE (Alexander et al., 2009) separately for each of the seven target populations.
In each ADMIXTURE analysis we also include French and Han samples, to aid in identifying
European or East Asian admixture, respectively. For the non-African target populations we also
include Yoruban samples to identify African admixture. We excluded 16 samples with >5% con-
tribution from more than once ancestry component. We estimated the inbreeding coefficient, F,
for each of the remaining individuals using PLINK and excluded two individuals with f> 0.0625.
This left us with a total of 142 individuals from the seven populations: Surui N=20, Pima = 20,
Karitiana N=21, Maya N=16, Melanesian N=19, Biaka Pygmies N=31 and Mbuti Pygmies N=15.

2.3.2 Example command lines for IBS and SFS analyses

# make consensus - needed to make saf files
{ANGSD} -b ./data /1000 G_aln/NA19042.mapped.ILLUMINA.bwa.LWK.low_coverage .20130415.

list \
-r {CHR} -minMapQ 30 -minQ 20 -setMinDepth 3 -doFasta 2 -doCounts 1 -out ./data/

consensus.NA19042.chr{CHR}

# make *.saf files (per individual)
{ANGSD} -b ./data /1000 G_aln/NA19027.mapped.ILLUMINA.bwa.LWK.low_coverage .20130415.

list \
-r {CHR} \
-ref ./data /1000 G_aln/hs37d5.fa \
-anc ./data/consensus.NA19042.chr{CHR}.fa.gz \
-sites ./data /1000 G_aln/GEM_mappability1_75mer.angsd \
-minMapQ 30 -minQ 20 -GL 2 \
-doSaf 1 -doDepth 1 -doCounts 1 \
-out ./data /1000 G_aln/saf/chromosomes/NA19027_chr{CHR}

# realSFS for each pair of individuals
{realSFS} ./data /1000 G_aln/saf/chromosomes/NA19042_chr{CHR}.saf.idx ./data /1000

G_aln/saf/chromosomes/NA19027_chr{CHR}.saf.idx -r {CHR} -P 2 -tole 1e-10 > ./
data /1000 G_aln/saf/chromosomes/NA19042_NA19027_chr{CHR}.2 dsfs

# make genotype likelihood file
{ANGSD} -b ./data /1000 G_aln/bamlist.all.txt \
-r {CHR} \
-sites ./data /1000 G_aln/GEM_mappability1_75mer.angsd \
-minMapQ 30 -minQ 20 -GL 2 \
-doGlf 1 \
-out ./data /1000 G_aln/GLF/chromosomes/chr{CHR}

# IBS
{IBS} -glf ./data /1000 G_aln/GLF/chromosomes/chr{CHR}.glf.gz \
-seed {CHR} -maxSites 300000000 -model 0 \
-nInd 5 -allpairs 1 \
-outFileName ./data /1000 G_aln/GLF/chromosomes/chr{CHR}. model0

2.3.3 Simulated ascertainment and demographic scenarios

Code conducting simulations, ascertainment, and analysis for Figure 2 is available at: https:
//github.com/rwaples/freqfree_suppl
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ABSTRACT

The Inuit ancestors of the Greenlandic people arrived in Greenland close to 1000
years ago. Since then, Europeans from many different countries have been present
in Greenland during various periods of time, including Dutch whalers, Danish-
Norwegian Lutheran and German Moravian missionaries, and Danish-Norwegian
colonists. As a consequence, the current Greenlandic population has a substantial
amount of genetic ancestry from Europe. In this study we investigate to what
extent different European countries have contributed to the genetic makeup of the
present-day Greenlandic people. From dense SNP chip data from 1582 admixed
Greenlanders and a reference panel of 181 unadmixed Greenlanders and 8275 Euro-
peans from 14 countries, we infer the ancestry sources of the European component
of the Greenlandic genetic makeup. We use haplotype-based methods to obtain
fine-scale resolution, which enables differentiation between European countries
with genetically similar populations such as Denmark and Norway. Due to the
rapid increase in population size in Greenland over the past 100 years we hypothe-
sized that the earlier European interactions, such as the Dutch whalers and early
missionaries, have contributed a larger amount of the European genetic ancestry
compared to the recent Danish colonists. We find that the European ancestry within
the Greenlandic people appears to be mainly Danish suggesting that most of the
European admixture took place within the last few generations.
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Introduction

The Greenlanders are descendants of the Inuit of the Thule culture (Raghavan et al., 2014) that
entered Northern Greenland from Canada in the 12th century (Gulløv, 2008; Friesen and Arnold,
2008). When these Inuit ancestors arrived to Greenland the Norse had lived in the southern part of
the island since 895 CE. The Norse stayed in Greenland until approx. 1450 CE, whereafter the Inuit
were the only inhabitants of the island up until the arrival of British and Danish-Norwegian explorers
starting in the 16th century (Gulløv, 2008). Neither archaeological nor genetic research show support
direct contact or gene flow between the Norse and the Inuit population (Gulløv, 2008; Moltke et al.,
2015). However, from the 16th century many thousands of Europeans from various countries either
visited or moved to Greenland. As a consequence there has been substantial gene flow from Europe
into the Greenlandic population (Bosch et al., 2003; Rasmussen et al., 2010; Pereira et al., 2015;
Moltke et al., 2015). A recent genetic study based on more than 10% of the adult population found
that more than 80% of Greenlanders have some European ancestry and that Greenlanders have on
average ∼25% European ancestry (Moltke et al., 2015). Such genetic studies have given a detailed
understanding of the Inuit ancestry of the present-day population of Greenland. However, there is a
much less detailed understanding of the European component of the ancestry and it is not well known
how much the different European countries have contributed to the Greenlandic gene pool.

European activities in Greenland after the Norse period ended can be roughly divided into four
categories; scientific and trade expeditions, commercial whaling, missionary work, and colonization
(see Figure 1). The search for the Northwest passage led English explorers to Canada and Greenland
in the 1500’s (Frandsen et al., 2017). Subsequently, whaling became the main incentive for European
activities in Greenland. For a long period in the beginning of the 17th century, whaling was predomi-
nantly led by England, The Netherlands, and Denmark-Norway, but eventually also Basque, French
and German, especially Frisian, whalers were active around Greenland (Frandsen et al., 2017; Brown,
1951). From 1670 onwards, the West Coast of Greenland became an important area for whaling and
from around 1700, falling whale stocks in Svalbard made the Davis Strait attractive for European
whalers, with whaling activities centered around Disko Bay, near present day Qeqertarsuaq and the
shore towns of Ilulissat, Qasigiannguit and Aasiaat(Frandsen, 2010; Frandsen et al., 2017). The Dutch
were especially active whalers in Greenland, sending between 50-100 ships to Greenland each year
from 1719 (Frandsen et al., 2017).

Around the same time, in 1721, the arrival of the Danish-Norwegian missionary priest Hans Egede
marked the beginning of the colonization of Greenland. This led to a new and more permanent type of
contact between Inuit and Europeans, although whaling was still a primary draw with 107 Dutch ships
and 14 German ships in West Greenland that year. In addition to the Danish-Norwegian missionaries,
the German Moravian brethren established several missions in Greenland in the period 1733-1900,
located in Nuuk and several other locations(Frandsen et al., 2017). In contrast to other missionaries,
most Moravian missionaries came in pairs as married couples and the mission had restrictions
on intermarriage between the German missionaries and the Inuit members of their congregations
(Wilhjelm, 2001).

In 1751 Denmark-Norway expanded colonial activities and claimed a monopoly on trade that sought
to exclude other European nations from economic access to Greenland, particularly the Dutch
(Frandsen et al., 2017). Since then the primary contact between Greenlanders and Europeans has
been with the countries within the Kingdom of Denmark. In particular, the Danish population, but
populations of Iceland, previously a part of the Kingdom of Denmark, and the Faroe Islands, currently
a part of the Kingdom of Denmark, have also historically interacted with Greenland and still today
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Early scientific & 
trade expeditions

1500-1600 
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Dutch, German, 

Norwegian, French, 
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~1751 - 1953 
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Greenlandic Inuit

1500
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1700

1800
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Year 1000

1751 Danish colonial expansions and monopoly

1733 German Moravian church established in 
Greenland

1721 Arrival of Lutheran missionary Hans Egede 
from Denmark-Norway + 50 persons from 
Norway

1615 Denmark-Norway begins whaling activities

1614 Establishment of the Dutch Nordsee 
Company for whale oil exploitation. About 70 
ships per year from the Netherlands came to the 
Davis Strait.  

1574 Martin Frobisher and later John Davis 
(Davis Strait)

1950s Increased Danish immigration to 
Greenland

1953 Greenland adopted as integral part of 
Denmark 

~1100-1300 Thule Inuit arrive in Greenland

1740s First recorded marriages between Inuit 
and Danes, Norwegians, and Swedes

Figure 1: Timeline of selected significant events in Greenlandic-European contact.

make up a small fraction of immigration into Greenland (Statistics Greenland). Furthermore, it should
be noted that Denmark-Norway was a conglomerate state until 1814, which means that people from
the currently delimited groups ’Norwegian’ and ’Danish’ were both represented by the Kingdom of
Denmark (Ostermann, 1940). Greenland remained a colony of Denmark until the 1950s, after which
Greenland and its population has been considered an equal part of Denmark. The 1950’s also marked
the beginning of a period with a significant influx of Europeans. The migration consisted mainly
of Danish workers but also, seasonally, of off-shore fishers primarily from Portugal and the Faroe
Islands, using local harbours during the high seasons (Hansen, 1955, 1961; Frandsen et al., 2017).
Since 1979 Greenland has had its own parliament and in 2009 it established self-government, though
it remains a part of the Kingdom of Denmark.

There is an extensive family registry from the Danish colonial period documenting personal rela-
tionships between the Inuit population of Greenland and European workers, traders and missionar-
ies(Daveluy et al., 2011; Seiding, 2011, 2016). The earliest marital contracts between Europeans and
Greenlanders are from around the time of the establishment of the Danish trade monopoly in the
early 1750s, but some marriages between Inuit and Danes, Swedes, and Norwegians in the 1740s
are documented(Ostermann, 1940; Frandsen, 2010; Frandsen et al., 2017). Church records, as well
as census documents from the Royal Greenland Trading Department, contain detailed lists of the
Inuit population as well as Greenlanders of both European and Inuit ancestry starting from the arrival
of the missionaries and through much of the colonial period until the beginning of the 20th century
(Seiding, 2016). At the beginning of the 19th century it was estimated that about 8% of the population
had both Inuit and European ancestry (Seiding, 2013), but this estimate was based on only part of
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the population as a part of the archives including population counts were lost in the Hans Hedtoft
shipwreck in 1959.

The degree of admixture prior to the colonial period is unknown and estimates are based on historical
accounts and speculation. As an example, the whaling and trading activities of the Dutch has led to
common beliefs that admixture with Dutch whalers was relatively common (Gad, 1969) resulting in
a fraction of the population in whaling areas being of Dutch descent (Egedes, 2017). Notably, the
Greenlandic population has grown dramatically from 10,000 at the beginning of the 1900s to more
than 55,000 today (Hamilton and Rasmussen, 2010). Therefore, any European contribution to the
gene pool before or at the beginning of the colonization would have had a much larger impact than
more recent admixture.

Hence in summary the extent different European countries have contributed to the genetic makeup
of the present-day Greenlandic people is an open question, which we aimed to address in this study.
And prior to performing this study we hypothesised - based on the currently available knowledge -
that not only Denmark but also The Netherlands, Norway and other countries who visited Greenland
before the Danish colonisation has made a substantial contribution.

To address the question we have analysed genetic data from 3972 (1582 not closely related) Green-
landers, as well as data from 14 different European populations including Denmark, Norway, the
Netherlands, and the UK. The detail to which it has been possible to address the European ancestry
of the Greenlandic population has previously been limited due to the close genetic similarity between
the European populations that have potentially contributed to the gene flow. However, using recently
developed programs CHROMOPAINTER (Hellenthal et al., 2014) and SOURCEFIND (Chacón-
Duque et al., 2018) we were able to disentangle the contribution from all of these highly genetically
similar populations to the present-day Greenlandic population.
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Materials and methods

Genotype datasets

Greenlandic data Study participants were Greenlandic individuals from two population surveys:
the Inuit Health in Transition (IHIT) (n=3115) and a study consisting of Greenlanders living in
Greenland (B99, n=1401), and Greenlanders living in Denmark (BBH, n=547) (Bjerregaard et al.,
2003; Bjerregaard, 2011). The cohorts have participants from 15 different locations in Greenland -
from Qaanaaq in the northwest to Tasiilaq in the southeast (see Figure 2) as well as Greenlanders living
in Denmark. All Greenlandic participants were genotyped on two SNP arrays: the CardioMetaboChip
(196,224 SNPs) (Voight et al., 2012; Moltke et al., 2015) and the Multi-Ethnic Global Array (∼1.5M
SNPs) citepBien2016-sh. Data from these two SNP arrays were merged on the plus strand and 3972
individuals with genotypes from both SNP arrays and a missing rate below 0.02 were retained. From
these we removed singletons, sites not on an autosome, as well as sites with a significant (p<1e-10)
deviation from Hardy-Weinberg equilibrium in a test that accounts for admixture (Meisner and
Albrechtsen, 2019). The approval for population genetics analysis was given by the Commission for
Scientific Research in Greenland (project 2014-08, 2014-098017).

Qaanaaq and villages
64 (10)

Upernavik villages
48 (2)

Upernavik
18 (1)

Uummannaq villages
84 (0)Ilulissat villages

28 (0)
Qasigiannguit

179 (2)Aasiaat
33 (30)

Maniitsoq
179 (2)

Maniitsoq villages
21 (0)

Nuuk
536 (10)

Narsaq
48 (4)

Qaqortoq
18 (1)

South villages
33 (30)

Tasiilaq
24 (56)

Tasiilaq villages
5 (43)

Sweden

(1000)

Finland
(530)

France

(478)

Germany

(1000)

Poland
(57)

Northern 
Ireland

(61)

Ireland
(344)

UK 
(1000)

Spain
(478) Italy

(745)

Norway
(942)

Denmark
(327)

Netherlands

(1000)

Belgium
(537)

Figure 2: Overview of samples used in the CHROMOPAINTER analyses. Maps show sampling
locations, sample sizes for each location is show in two parts, those in parentheses give the number
of individuals included in the reference panel, outside parentheses give the number of admixed
Greenlandic individuals included from each location in Greenland.

Greenlandic-European reference panel The Greenlandic genotype data (n = 3972) were merged
with data from from 14 different European countries (n = 14,385): The UK, Sweden, Germany,
Norway, Italy, Finland, Belgium, the Netherlands (Dutch), France, Ireland, Denmark, Spain, Northern
Ireland, and Poland. The European data are from the Wellcome Trust Case Control Consortium
(WTCCC2, EGAD00000000120, EGAD00010000124, EGAD00010000288, EGAD00010000632)
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(Dubois et al., 2010), and were selected to represent a broad spectrum of potential European admixture
sources in Greenland (Figure 2).

European data sets were lifted to hg37 and put on the plus strand prior to merging. Also, we excluded
sites within the MHC region and within the HsInv0501 inversion on chr8, as well as sites with more
than two alleles. Finally, we limited the number of individuals from each European country to 1000
and confirmed that there were no related individuals within each European country. When merging
the Greenlandic and European datasets, we kept all sites present in both datasets and excluded 52
sites with more than 2% missing data. The resulting merged data set had 135,702 loci and 12,247
individuals with a total genotyping rate of 0.9995 and all loci with a minor allele count of at least 5.

1000 Genomes Data For admixture and local ancestry analyses (see below) we selected the Han
Chinese in Beijing (CHB), Yoruba in Ibadan (YRI), and Utah residents with Northern and Western
European Ancestry (CEU) population samples from the Thousand Genomes Project (1000G), for a
total of 310 individuals. We used the phased genotypes from phase 3 aligned to GRCh37 from the
vcf files available at http://www.internationalgenome.org.

Haplotype-based analyses The merged Greenlandic-European dataset was split by chromosome
and phased without a reference panel using SHAPEIT (v2.r904) (Delaneau et al., 2013) with default
settings, using the HapMap phase II recombination map for hg37.

We excluded a number of Greenlandic individuals based on relatedness estimates and ADMIXTURE
analyses (see separate subsections below). More specifically, we removed close relatives among all
Greenlandic individuals by retaining at most one individual from each pair of individuals with a
coefficient of relatedness > 0.2. Then we split the remaining Greenlanders into two sets based the
results of a K=2 ADMIXTURE analysis: 1) the un-admixed Greenlanders with > 99% inferred Inuit
ancestry, and 2) the admixed Greenlanders with >1% inferred European ancestry. From the second
set we removed seventeen Greenlandic individuals estimated to have >5% African or >7% Asian
ancestry in a K=4 ADMIXTURE analyses. These thresholds were selected to exclude individuals that
differed markedly from the majority of other Greenlandic individuals (data not shown) and to be able
to avoid having to include any Asian and African reference samples in our fine-scale analyses. We
also excluded admixed Greenlandic individuals living in Denmark as these individuals may be more
likely to have Danish ancestry than other European ancestries and we did not have similar samples
of Greenlanders living abroad from other countries. This left us with a dataset consisting of 1582
not closely related Greenlanders with European admixture (target samples), 181 not closely related
unadmixed Greenlanders (Inuit reference samples), and 8303 European reference samples.

Based on the results of a pilot CHROMOPAINTER analysis, we excluded 28 of the European
reference samples because they were significant outliers (z-score > 5), based on comparing their
chunkcounts to the rest of the individuals from their population (not shown). This resulted in a final
set of 8275 European reference samples (Figure 2) and thus 8275 + 181 = 8456 reference samples
in total.
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Analyses

ADMIXTURE We performed two different ADMIXTURE analyses to facilitate the generation
of input data for all our main analyses: 1) an unsupervised K=2 ADMIXTURE analysis of all the
3972 Greenlandic individuals only assuming an Inuit and a European ancestry component, following
a previous study (Moltke et al., 2015) and 2) a supervised K=4 ADMIXTURE analysis of the
Greenlandic individuals combined with individuals of European, Asian and African descent to
investigate if there are any ancestry from Asian and African populations. In the K=4 analysis the
Greenlandic individuals that were estimated to have >99% Inuit ancestry in the K=2 analysis served
as references for the Inuit ancestry component.

Before the unsupervised K=2 analysis, we applied a minor allele frequency (MAF) filter of 0.05 to
the Greenlandic data set described above (n = 3972), resulting in a dataset with 538,514 sites. For
the supervised K=4 admixture analysis we merged the genotype data from the K=2 analysis with
data from 310 individuals from three 1000G populations, retaining 521,622 overlapping sites after
removing 46 sites with a greater than 0.25 frequency difference in the CEU compared to the European
admixture component in the K=2 analysis. We selected the Han Chinese in Beijing (CHB), Yoruba in
Ibadan (YRI), and Utah residents with Northern and Western European Ancestry (CEU) populations
as proxies for Asian, African, and European ancestry, respectively.

For each of the two ADMIXTURE analyses we ran each ADMIXTURE v1.3.0 (Alexander et al.,
2009) ten times and selected the run with the maximum likelihood, checking convergence by ensuring
multiple other runs within two log-likelihood units.

Relatedness To estimate relatedness coefficients for the Greenlandic samples we used relateAdmix
(Moltke and Albrechtsen, 2014). This method accounts for admixture by estimating individual
allele frequencies when estimating pairwise identity by descent (IBD) coefficients (k1, k2) based
on genome-wide ancestry proportions for each individual. We used the K=2 genotype data and
ADMIXTURE estimates of these genome-wide ancestry proportions. To estimate relatedness for the
Europeans we applied the IBD inference function (–genome) in plink2 to the genotype data from all
the Europeans.

CHROMOPAINTER We characterized the coancestry between Greenland and Europe with the
haplotype-based method CHROMOPAINTER (Lawson et al., 2012). This method is based on a
Hidden Markov model (HMM) that statistically reconstructs (“paints”) a target haplotype as a mixture
of a set of reference haplotypes, allowing for recombination between the reference haplotypes. First,
we painted each reference individual using all other reference individuals, then, we painted each
admixed Greenlander using all reference individuals. We specified constant mismatch (Mu = 2.04
* 10e-5) and switch rate (Ne = 103.35) parameters across all analyses, which we estimated as the
weighted mean values using data from chromosomes 1,4,15, and 22 in a subset of 168 individuals
chosen to represent all reference populations, using 10 iterations of the expectation-maximization
(EM) algorithm implemented in CHROMOPAINTER. For all CHROMOPAINTER analyses, we
used the same recombination map as during haplotype phasing.

CHROMOPAINTER quantifies coancestry using two different measures, one based on the length of
the genome copied from each donor in centiMorgans (cM), deemed “chunk lengths” by the program,
and the second based on simple counting of the number of distinct ancestry chunks copied from
each donor, deemed “chunk counts”. Unless otherwise noted, we used the “chunk lengths” measure
in downstream analyses. We summed the expected coancestry values across all chromosomes to
produce a coancestry vector for each painted individual, giving the expected amount coancestry from
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each reference individual. Notice, in this model, the coancestry between two individuals need not be
symmetric.

Ancestry contributions from the European reference countries Based on the output from
CHROMOPAINTER we estimated the ancestry contributions from each European reference country
and Greenland with SOURCEFIND (v2) (Chacón-Duque et al., 2018) and non-negative least squares
regression (NNLS), as implemented in GLOBETROTTER (Hellenthal et al., 2014). We applied
both these methods in two ways: 1) to each admixed Greenlander individually 2) to the entire set of
admixed Greenlanders as a group. The individual-based analysis allowed us to investigate the range
of individual-level patterns of European ancestry, while the group analysis considers a large number
of individuals at once, and estimates the ancestry sources of the mathematically-average admixed
Greenlander.

To ensure convergence was reached in the SOURCEFIND analyses we ran 5 MCMC chains for each
analysis and compared variance within and between separate chains with the Rhat diagnostic (Gelman
and Rubin, 1992). Each of the chains were run with 1M iterations, a 100K burn-in and a thinning
factor of 1000. We tested that we discarded enough to burn-in by computing Rhat while discarding
the first 500K iterations, and compared these values to the shorter burnin (data not shown). For each
ancestry source in each individual the Rhat diagnostic was consistent with MCMC convergence; mean
Rhat across all chains was 1.0001, and the max value was 1.0044. For most of our SOURCEFIND
analyses we used default priors with 8 eligible source and a mean of 4 sources expected to contribute.
However, we tested if the results were robust to choice of prior by also running some additional
analyses with a more sparse prior of 8 eligible source and a mean of 2 sources expected to contribute.

To assess the CHROMOPAINTER results we visualized the chunk counts coancestry matrix with
PCA, following the fineStructure (Lawson et al., 2012) documentation. We then summed the painting
vector from each individual over the donor groups (e.g. countries). This reduced the length 8456
painting vector representing copying from individuals to a length 15 copying vector representing
copying from each country. All PC analyses were conducted with sklearn.decomposition.PCA.

To assess the SOURCEFIND and NNLS results we evaluated our ability to identify ancestry associated
with each reference group with a leave-one-out procedure. We inferred the ancestry of each reference
individual while excluding them from the reference in the same way we analyzed each admixed
Greenlander.

Investigating European admixture in the last few generations To investigate the timing of Eu-
ropean admixture, we assigned local ancestry, either Inuit or European, in each admixed Greenlandic
individual using RFMix (v2) (Maples et al., 2013). In this analysis we used the same Inuit reference
individuals as in the CHROMOPAINTER analysis, along with CEU individuals from 1000G to
represent the European ancestry, this allowed us to utilize the larger number of overlapping loci
with the 1000G data set. RFmix was run with default parameters, except we specified two different
admixture dates, either 3 or 8 generations ago, to ensure that our results were robust to this choice. We
used genotype data from the K=4 admixture analysis, with 521,622 sites, was split by chromosome
and phased without a reference panel. After phasing, the reference Inuit and CEU individuals were
used as the ancestry references for local ancestry inference in the admixed Greenlanders.

The length of admixture tracks is informative about the admixture date, but we found that the
admixture was so recent, and the tracks were so long that the rate of phasing switch errors was large
relative to the recombination rate since admixture, complicating the estimation of the ancestry tracks
length distribution. Instead, we summarized the results for each individual by calculating the fraction
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of the genome, in cM, that has either two Inuit alleles, two European alleles, or one Inuit and one
European allele. We found a few chromosomal regions, such as near the edge of chromosomes, with
local ancestry fractions that were outliers relative to the rest of the genome, suggesting potential
problems with the inference of local ancestry in these regions, or local genomic factors affecting
ancestry. To address this, we removed 88 out of 26008 (0.3%) genomic windows of local ancestry
calls with less than 62.5% Inuit ancestry or with more than 72.5% Inuit ancestry, for a total exclusion
of 3.76 cM.
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Results

To investigate which European countries have contributed genetic ancestry to the current population
of Greenland we analysed dense SNP array data from a large sample of not closely related, admixed
Greenlanders (n = 1582) combined with a set of reference individuals aimed to represent the different
possible ancestry sources for the admixed Greenlanders (Figure 2). The reference consisted of
181 unadmixed Greenlanders and 8275 individuals from 14 different European countries, including
Denmark, Norway, Sweden, Germany, and the Netherlands (Figure 2). We first analysed this combined
data set using haplotype-based methods to obtain estimates of the ancestry contribution from the 14
different European countries among Greenlanders. Then we performed several additional analyses
to assess the validity of the results obtained. Finally, we looked into the timing of the admixture to
further characterize the history of European admixture in Greenland.

Inference of European admixture sources with haplotype based analyses

We performed the haplotype-based analyses in two steps. The first step was to use CHRO-
MOPAINTER, to reconstruct (“paint”) the genomes of the admixed Greenlandic individuals as
a mixture of the haplotypes in our reference samples, providing an estimate of their co-ancestry with
these reference samples. The second step was to apply SOURCEFIND, a Bayesian MCMC-based
method, to estimate the genetic contribution of the Greenland Inuit and each of the 14 different
European countries to the ancestry of the admixed people in Greenland. We conducted this latter
analysis in two ways: to each admixed Greenlandic individual independently, and to all the admixed
Greenlanders as a group.
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Figure 3: Violin plot of the per-country ancestry estimates by SOURCEFIND, based on the individual
analysis. Each source country has a violin showing the distribution of the estimated mean ancestry
fraction from that country, across all admixed individuals. Each admixed individual appears in the
distribution for each country. The mean ancestry for each individual is calculated across all MCMC
iterations.

10

Chapter3. Paper II 79



(WAPLES ET AL., IN PREPARATION)

Individual-based Group-based
>=1% >=5% >=20% SOURCEFIND NNLS

Belgium 0.0% (0) 0.0% (0) 0.0% (0) 0.1% -
Denmark 76.4% (1208) 69.5% (1100) 35.8% (567) 31.6% 27.9%

Dutch 0.1% (1) 0.1% (1) 0.1% (1) 0.1% -
Finland 0.6% (9) 0.3% (5) 0.1% (1) 0.0% -
France 0.0% 0.0% (0) 0.0% (0) 0.2% 0.6%

Greenlandic Inuit 98.3% (1555) 98.3% (1555) 97.4% (1541) 65.6% 64.9%
Germany 0.1% (1) 0.1% (1) 0.0% (0) 0.3% 0.8%

Ireland 0.2% (3) 0.2% (3) 0.0% (0) 0.1% -
Italy 0.0% (0) 0.0% (0) 0.0% (0) 0.2% 1.3%

Northern Ireland 0.0% (0) 0.0% (0) 0.0% (0) 0.1% -
Norway 17.8% (281) 6.2% (98) 1.1% (18) 0.7% 2.6%
Poland 0.1% (2) 0.1% (1) 0.0% (0) 0.2% 0.7%
Spain 0.0% (0) 0.0% (0) 0.0% (0) 0.2% -

Sweden 3.5% (56) 1.3% (20) 0.1% (1) 0.3% 0.9%
UK 0.3% (5) 0.2% (3) 0.1% (1) 0.2% 0.2%

Table 1: Assignment to country at 1%, 5%m and 20% ancestry thresholds across 1582 ad-
mixed Greenlanders. The values shown are percentages (counts) of the number of individuals
inferred to have at least [1%, 5%, 20%] ancestry, arranged by column from each source country.
To be counted here, an individual must have had at least [1%, 5%, 20%] ancestry with a posterior
probability above 99%, see supplement for a table including results based on posterior probability
thresholds of 95% and 99.9%.

When performing inference on each admixed individual, we estimated the 1582 admixed Greenlanders
to have an average of 65.8% Inuit ancestry, and 34.1% European ancestry (Figure 3). In total we
found 1100 individuals (69.5%) assigned at least 5% Danish ancestry with 0.99 posterior probability,
the most of any European country (Table 1). The other European countries found to contribute
more than 5% ancestry to five or more individuals are all Nordic countries: Norway with 98 (6.2%),
Sweden with 20 (1.2%), and Finland with 5 (0.3%). We find only very few individuals with high
posterior probability (>.99) of having more than 5% ancestry from other regions of Europe including
the British-Irish Isles (0.3%), and the Netherlands/Belgium (0.06 %). The same overall pattern is
observed when a lower 1% ancestry threshold is used instead of 5% (Table 1) and if we use different
posterior probability thresholds (Supplemental Table 2). With an ancestry threshold of greater than
20%, there is essentially only European ancestry from Denmark and Norway (Table 1). In locations
within Greenland, European ancestry is less common in the North and East, as noted by previous
studies (Moltke et al., 2015), and visible here as an elevated number of reference Inuit individuals in
Qaanaaq and Tasiilaq. Second, almost all of the few individuals with a posterior probability above
0.99 of having at least 5% ancestry from the UK or Ireland are from the Northern part of Greenland
despite the fact that only 4% of the 1582 admixed Greenlandic individuals are from there (Figure 2).

When performing the group-based analysis, the estimated Inuit ancestry fraction is consistent (65.6%)
and the Danish ancestry component is estimated to be 31%, with no other European country contribut-
ing more than 1%. In this analysis, Denmark makes up 91% of the total estimated European ancestry,
with the only other country contributing more than 1% of the European ancestry being Norway at
2.1% (Table 1).

Taken together, the two analyses both suggest that the vast majority of the European ancestry among
Greenlanders is Danish, with a smaller fraction of it inferred to be from other Nordic countries,
especially Norway, and very little from the UK and the Netherlands.
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Validity of results

To investigate the validity of our results, we performed several additional analyses. First, we tried
to assess to what extent the CHROMOPAINTER and SOURCEFIND methods make it possible to
sensibly distinguish between ancestry from the different European countries based on the available
data. For CHROMOPAINTER we did this by performing principal component (PC) analysis of
CHROMOPAINTER co-ancestry estimates for all 10038 individuals in our dataset, after summing
over the ancestry contributions from each country (Figure 4, Supplemental Figure 4). The first PC
axis separates the reference Inuit from all the Europeans, with the admixed Greenlanders falling
between the Europeans and the reference Inuit. Subsequent axes tend to separate the individuals from
one or two European countries from the rest. For example, the third PC axis separates the Norwegian
individuals from most of the other countries, including Denmark, and the ninth and tenth PC axes
combined separate the Danish individuals, suggesting that the CHROMOPAINTER results allows
us to tell apart individuals even from countries like Norway and Denmark that are genetically very
similar. Notably, the many admixed Greenlanders have a pronounced weighting on the ninth and tenth
PC axes, projecting them coincident with the Danish individuals. And along the third PC axis, which
separates the Norwegian reference samples from Danish, most of the admixed Greenlanders fall
on top of the Danish individuals. Hence, the CHROMOPAINTER output also seems to support the
notion that the European ancestry of the Greenlanders to a large extent is from Denmark as opposed
to Norway.

We assessed assignment to country using a leave-one-out strategy: we inferred the ancestry of each
reference individual with SOURCEFIND and NNLS, while excluding them from the reference, check-
ing to what extent the results matched the individuals’s known country of origin. This demonstrated
a relatively high ability to identify ancestry from most countries, especially Denmark (89%), the
Netherlands (87%) and Norway (90%). Importantly, we did not observe high rates of misassignment
between Denmark, Norway, and the Dutch, which were all below 3%, suggesting it is possible to
distinguish these ancestry sources.

Second, we ensured the results were consistent with alternative methods. In particular, we performed
an ADMIXTURE analysis and found that for all admixed Greenlanders, the Inuit ancestry proportion
estimated using ADMIXTURE was highly correlated both with the percent of genome (in cM) that
CHROMOPAINTER inferred to be copied from Inuit and with the individual-based Inuit ancestry
fractions estimated by SOURCEFIND (Supplemental Figure 2). We also ran NNLS as implemented
in GLOBETROTTER and found results that are qualitatively similar to the results of SOURCEFIND
(Table 1). However, the leave-one-out analysis with NNLS showed a reduced ability to recover
country of origin (Supplemental Figures 5 & 6). Finally, we reran SOURCEFIND with another choice
of priors than the default ones used in our initial analyses. This also resulted in qualitatively very
similar results (Supplemental Table 4).

Investigating European admixture in the last few generations

To further characterise the European admixture history in Greenland, we performed an analysis
to investigate the timing of admixture in Greenland. Specifically, we applied RFmix to the set of
admixed Greenlander to estimate the proportions of the genome where each individual of interest
has 1) inherited both alleles from Inuit ancestors, 2) inherited both alleles from European ancestors
or 3) inherited one allele from an Inuit ancestor and one allele from a European ancestor. Like the
genome-wide proportion of Inuit ancestry these three “ternary ancestry fractions” should be robust
to phasing switch errors because they do not rely on the length of ancestry tracts and importantly
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Figure 4: Scatter plots of selected principal component (PC) axes. Colored shapes represent reference
(circle) and admixed (diamond) individuals, and are shaded by country. The percentages given on each
axis show the percentages of variance explained. PC analysis conducted on the CHROMOPAINTER
coancestry matrix, summed over the reference individuals from each country. Plotting z-order is
the same as the legend. Further PCA plots are available in the supplement. A) PC1 - 2, B) PC3-4,
PC9-10.

they contain information about the timing of admixture. For example, an absence of sites where both
alleles are inherited from Inuit ancestors suggests that at least one parent is of European ancestry
which in turn suggests admixture with a European took place in the last generation (blue axis on
Figure 5A). And similarly other configurations are expected for different other recent admixture
events like first, second, and third generation European admixture (see Figure 5A for details).

When we summarized the ternary ancestry fractions of the 1582 admixed Greenlanders (Figure 5B),
we saw several interesting patterns. First, along the left edge, we find 250 admixed Greenlanders
consistent with having at least one unadmixed European parent (blue and yellow dots in Figure 5B).
Of these, 27 have two European alleles at nearly every position (yellow dots on Figure 5B), suggesting
they have two European parents each. Together the 277 European parents of these 250 individuals
account for >8% of the overall ancestry of the admixed individuals (277/(2*1582)). Assuming a
European ancestry fraction to be ∼35%, this set of parents accounts for ∼25% (8/35) of the total
European ancestry we observe. Notice, the 250 individuals are pulled slightly off the left axis, we
believe this is due to some minor bias in our local ancestry inference. The alternative explanation
would be European individuals with small amounts of Inuit admixture, occurring many generations
ago. However, we do not find signs of numerous individuals with this ancestry pattern in any other
analyses, so we found it more likely that it is caused by a slight bias in our local ancestry inference.
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Figure 5: Ternary plots of “ternary ancestry fractions” i.e. the genome-wide fraction of the
genome where 1) both alleles have Inuit ancestry (shown on the Inuit/Inuit axis), 2) both alleles
have European ancestry (European/European axis) or 3) one allele has Inuit ancestry and one
has European ancestry (European/Inuit axis). The relative abundance of different fractions is
informative about admixture history. A) A ternary plot where the dots show the expectations for
the three ternary ancestry fractions for a number of possible recent admixture histories between
Greenlanders and Europeans. The three corners of the plot represent genomes with all loci having two
European alleles (bottom left), two Inuit alleles (bottom right), or one Inuit and one European alleles
(top). The left axis in blue indicates fractions that are expected for individuals with at least one fully
European parent since it has very few sites with two Inuit alleles. The colored dots show expected
ternary fractions for selected admixture histories: individuals with one unadmixed Greenlandic
parents and one European parent (yellow), three Inuit grandparents and one European grandparent
(green), three European grandparents and one Inuit grandparent (blue), one Inuit and one European
grandparent on each side (brown), three Inuit and one European great-grandparent on one side, and
an Inuit parent on the other (pink), and finally three Inuit and one European great-grandparent on
each side (red). B) Ternary plot with a dot for each of the 1582 admixed Greenlanders showing their
estimated ternary ancestry fractions. The colors convey the way we have categorized the individuals
in the text.
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Second, many of the remaining admixed Greenlanders have ternary ancestry fractions close to the
expected values from second and third generation admixture with Europeans shown in Figure 5A
(dots near the right axis, Figure 5B). However, it is important to emphasize that a lot of these fractions
could also be the result of older admixture, so this pattern has to be interpreted with caution.

A last pattern worth noticing is that there is a high degree of variation in ternary ancestry fractions,
which is not expected from a history with only older admixture.

Taken together, the observed ternary fractions are consistent with an admixture history of mainly
admixture within the last few generations, but some older gene flow as well. This history matches a
time when Denmark, according to historical records, accounted for a large portion of the European
contact, trade, and migration with Greenland. And in turn, this makes our finding of mainly Danish
ancestry consistent with historical records.
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Discussion

The genetic ancestry of present-day Greenlanders is mainly Inuit, but also to a large extent European.
Here we further investigated which European countries have contributed to this European ancestry by
applying powerful haplotype-based methods to genetic data from almost 2000 not closely related
Greenlandic individuals from 15 towns and villages across Greenland and more than 8000 European
individuals from 14 countries. We found that the majority of the European ancestry among Green-
landers originates from Denmark from admixture events within the last few generations; a period of
time when Danes, according to historical records, has accounted for a large portion of the European
contact, trade, and migration with Greenland.

However, there are several issues worth reflecting on. In particular, a major consideration in genetic
assignment analyses is the extent to which the samples included in the analyses are representative
of the groups we want to draw inferences about. In our case, we have to consider 1) if the included
Greenlandic individuals are representative of Greenland as a whole, 2) if the included European
individuals are representative of their respective countries, 3) if the reference sample we used includes
all potentially relevant ancestry sources and 4) whether countries are suitable ancestry groups for our
analyses.

In this study we have analysed a large sample of the Greenlandic population selected as part of a
public health survey to represent all of Greenland. However, we did not have participants from all
inhabited places in Greenland. In particular, we lack individuals from Disko Island, the center of
Dutch whaling activities in Greenland (Frandsen et al., 2017). It is certainly possible we may have
found more Dutch ancestry in individuals from Disko than we did in the individual we considered in
this study. That said, while it would be very interesting to have data from the unsampled locations,
the individuals considered here represent an extensive sampling from Greenland, and thus the results
suggest that if the Dutch have indeed contributed substantially to the Greenlandic population they
have only done so very locally and their descendants have remained in place.

Assessing whether the samples from the European countries are representative for those countries is
difficult, because we we do not have access to the within-country metadata. However, many of the
same European individuals have previously been used for a similar study of the fine-scale ancestry of
the British Isles (Leslie et al., 2015).

Regarding the related question of whether the reference we used includes all potentially relevant
ancestry sources, we did include samples from almost all the European countries with historical
record of contact since 1500 (Figure 1). There are only two exceptions. One of these is Portugal,
which we were not able to acquire publicly available samples from. The historical data about contact
with Portugese mainly suggest an influence from the seasonal offshore cod fisheries in the period
between 1930-1970. As the colonial monopoly was gradually loosened after WW2, foreign fisheries
in Greenlandic waters began and then peaked in the 50’s and 60’s with the Portuguese as the most
active and successful nation in the fisheries (Hansen, 1955, 1961). However, contact to the foreign
fishermen was limited to the occasional contact when the ships docked at Greenlandic harbours.
However, we expect the lack of such samples to have a minimal effect because we included samples
from Spain, and saw very little sign of Spanish ancestry.

The other exception is Iceland and the Faroe islands, that are island nations whose position in the
North Atlantic facilitated contact with Greenland. They would be difficult to include in our analysis
as potential source countries due to their recent history of admixture and gene flow from the source
countries already included in this study (Ebenesersdóttir et al., 2018). For this reason, it is difficult to
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draw any conclusions on whether the European ancestors of any Greenlanders lived in one of these
countries for a few generations prior to immigration to Greenland.

With respect to the fourth and last issue, we chose to use present-day countries as the the unit
of analysis, in the sense that we describe each individual as having a mixture of ancestries from
different countries. Previously published CHROMOPAINTER analyses have often not used present-
day countries as units, but rather defined ancestry groups based on a genetic clustering of individuals.
For example, Chacon-Duque et al. (2018) defined 56 “surrogate” ancestry sources from across the
world and used them to describe admixture in Latin Americans. We chose to use countries for a
two reasons. First, countries are easy to interpret and immediately recognizable. Second, the recent
timescale of much of the admixture, suggest that current day countries are reasonable proxies for the
ancestry at the time of admixture. The results from the leave-one-out analyses suggest that this choice
was reasonable and that it is possible to distinguish between the reference countries. In particular, we
demonstrated that we could tell apart individuals from key countries such as Denmark, Norway and
the Netherlands and that the results were fairly robust to the methodology used.

Despite these shortcomings, the results consistently point towards the European ancestry of the
present-day Greenlanders being predominantly Danish and recent. This is somewhat unexpected and
indicates that European activities prior to Danish colonization did not have a significant impact on
the genetic composition of the population in Greenland. This is in contrast both to common beliefs in
Greenland (Gad, 1969) and our own initial hypothesis. The lack of admixture from whaling countries,
especially the Netherlands is noteworthy, but might be explained by a number of factors. First,
whaling activities occurred mostly near Disko Bay, contact with the local population was sporadic
and whalers did not commonly spend the winter in Greenland, but instead returned to Europe. Second,
Dutch and other European whaling activities in Greenland were limited to about a century after which
the Danish colonization and economic monopoly ensured that Denmark was major point of contact
between Europe and Greenland. Finally, it has been postulated that first contact with Europeans was
followed by severe epidemics and that the interaction with the Dutch around Disko probably led to
some of the first incidents of tuberculosis in the region (Gad, 1969). A well-documented example was
a severe smallpox epidemic in Nuuk in the 1730s following the arrival of European ships (Gad, 1969).
As most victims of the epidemics were women and children and particularly those with close contact
with Europeans this would have led to fewer survivors among admixed children in the beginning of
contact with Europeans as compared to later contact with Europeans, which was highly dominated by
Danish. Among other Europeans with prolonged contact with the Greenlandic population were the
German Moravian brethren, who stayed in Greenland for about 170 years until 1900. The relatively
small German ancestry fraction may be due to the restrictions that the Moravian brethren put on
intermarriage with the Greenlandic population were efficient.

The inflow of Danes to Greenland particularly from the 1940s marked a substantial increase in
immigration rate of Europeans to Greenland, very likely contributing to the predominantly Danish
source of European ancestry. This is also well in line with the many individuals in our study that we
infer to have at least one entirely European parent. Furthermore, among the Greenlandic individuals
that do not have traces of European admixture, most live in the very North as well as the East coast of
Greenland as shown in previous research (Moltke et al., 2015). This aligns well with Danish colonial
activities that were initiated later in the North (1909) and East (1894) than in the Southwest (1721).
Concurrently, it seems reasonable to argue that Danish colonial trade and administrative policies
have been an important factor in shaping the genetic composition of the current day Greenlandic
population. Taken together, these results seem consistent with recent demographic trends in Greenland
and with historical records of Europe contact.
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Supplemental Tables 
 
 

CHR cM nSNPs 

mean 
ancestry 

chunks 
means SNPs 

per chunk 

1 292.1 10398 524.4 19.8 

2 274.3 11109 502.4 22.1 

3 227.1 9419 428 22 

4 219.4 8233 402.4 20.5 

5 208.6 7976 386.8 20.6 

6 197.8 9336 367.4 25.4 

7 189.5 7774 354.2 21.9 

8 177.4 7189 312.7 23 

9 179.4 6599 311.4 21.2 

10 182.2 7070 331.7 21.3 

11 161.5 6685 306.1 21.8 

12 173.9 6697 320.3 20.9 

13 128.3 4915 241.9 20.3 

14 115.5 4430 224.2 19.8 

15 150.8 4346 233.8 18.6 

16 130.7 4496 246.4 18.2 

17 127.9 4039 243.5 16.6 

18 119.7 3907 224.5 17.4 

19 106.6 2914 201.7 14.4 

20 109.8 3698 207.8 17.8 

21 63.5 2251 120.8 18.6 

22 72.4 2221 133.7 16.6 

 
Supplemental Table 1.​ Summary of CHROMOPAINTER results from each chromosome 
showing the number of SNPs, and the number of distinct ancestry chunks on each 
chromosome.  Chunk values are averages across all analyzed individuals, including both 
Europeans and Greenlanders. 
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 min1% min5% min20% 

Threshold 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 

Belgium 1 0 0 0 0 0 0 0 0 

Denmark 1287 1208 1109 1190 1100 1002 639 567 483 

Dutch 3 1 1 1 1 1 1 1 1 

Finland 11 9 7 5 5 5 1 1 1 

France 0 0 0 0 0 0 0 0 0 

Greenlandic 
Inuit 1555 1555 1555 1555 1555 1555 1542 1541 1540 

Germany 10 1 0 4 1 0 0 0 0 

Ireland 6 3 3 4 3 0 0 0 0 

Italy 0 0 0 0 0 0 0 0 0 

Northern 
Ireland 1 0 0 0 0 0 0 0 0 

Norway 364 281 210 133 98 75 20 18 17 

Poland 8 2 0 3 1 0 0 0 0 

Spain 0 0 0 0 0 0 0 0 0 

Sweden 90 56 34 31 20 13 3 1 1 

UK 8 5 3 5 3 3 1 1 1 

 
Supplemental Table 2​ Assignment to country at 1%, 5% and 20% ancestry thresholds 
across 1582 admixed Greenlanders. The values shown are counts of the number of 
individuals inferred to have at least [1%, 5%, 20%] ancestry, arranged by column from each 
source country, as in Table 1 in the main text. Sub-columns give counts at different support 
thresholds.   
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 min1% min5% min20% 

Theshold 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 

Belgium 1 0 0 0 0 0 0 0 0 

Denmark 1293 1218 1122 1204 1122 1024 664 583 490 

Dutch 3 1 1 1 1 1 1 1 1 

Finland 11 9 7 5 5 5 1 1 1 

France 0 0 0 0 0 0 0 0 0 

Greenlandic 
Inuit 1555 1555 1555 1555 1555 1555 1542 1541 1540 

Germany 19 1 1 10 1 0 1 0 0 

Ireland 6 3 3 4 3 0 0 0 0 

Italy 0 0 0 0 0 0 0 0 0 

Northern 
Ireland 1 0 0 0 0 0 0 0 0 

Norway 357 277 205 132 96 77 20 18 17 

Poland 6 2 2 3 2 0 0 0 0 

Spain 0 0 0 0 0 0 0 0 0 

Sweden 93 58 36 38 20 13 3 1 1 

UK 8 5 3 6 4 3 1 1 1 

 
Supplemental Table 3.​ Assignment to country at 1%, 5% and 20% ancestry thresholds 
across 1582 admixed Greenlanders, with sparse prior. The values shown are counts of the 
number of individuals inferred to have at least [1%, 5%, 20%] ancestry, arranged by column 
from each source country, as in Table 1 in the main text. Sub-columns give counts at 
different support thresholds.  
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 Group-based 

 SOURCEFIND 

Belgium 0.1% 

Denmark 32.3% 

Dutch 0.0% 

Finland 0.0% 

France 0.2% 

Greenlandic Inuit  65.6% 

Germany 0.3% 

Ireland 0.1% 

Italy 0.1% 

Northern Ireland 0.1% 

Norway 0.6% 

Poland 0.1% 

Spain 0.1% 

Sweden 0.2% 

UK 0.1% 

 
 
Supplemental Table 4.​ Effect of a sparse prior on the grouped SOURCEFIND analysis.  In 
the group-based analysis (right) the values shown are the percentage ancestry inferred to to 
come from each country, by SOURCEFIND and NNLS. Compare to Table 1 in the main text. 
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Supplemental Figures 
 
 
 

 
Supplemental Figure 1​. Barplot of the unsupervised ADMIXTURE analysis (K=2) for 3972 
Greenlanders. The Greenlandic Inuit ancestry is shaded green. This analysis was used to 
identify admixed and non-admixed Greenlander for downstream analyses. 
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Supplemental Figure 2.​ Agreement between the ADMIXTURE K=2 Greenlandic Inuit ancestry 
proportion in each admixed Greenlandic individual (see Supplemental Figure 1) and the 
proportion of the genome copied from reference non-admixed Greenlanders in 
CHROMOPAINTER. The correlation coefficient for this relationship is 0.9976. 
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Supplemental Figure 3.  ​Coancestry matrix, between ​8456 reference individuals​, as estimated 
by CHROMOPAINTER,  based on “chunk lengths”. Colors along the axes show the country of of 
origin for each individual. Individuals are not ordered within each country. 
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Supplemental Figure 4. ​Scatter plots of principal component (PC) axes. Colored shapes 
represent reference (circle) and admixed (diamond) individuals, and are shaded by country. The 
percentages given on each axis show the percentages of variance explained. PC analysis 
conducted on the CHROMOPAINTER coancestry matrix, summed over the reference 
individuals from each country. Plotting z-order is the same as the legend. 
(Continued below) 
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Supplemental Figure 4 (continued). ​Scatter plots of principal component (PC) axes.  
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Supplemental Figure 4 (continued). ​Scatter plots of principal component (PC) axes.  
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Supplemental Figure 4 (continued). ​Scatter plots of principal component (PC) axes.  
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Supplemental Figure 4 (continued). ​Scatter plots of principal component (PC) axes.  
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Supplemental Figure 4 (continued). ​Scatter plots of principal component (PC) axes.  
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Supplemental Figure 4 (continued). ​Scatter plots of principal component (PC) axes. Colored 
shapes represent reference (circle) and admixed (diamond) individuals, and are shaded by 
country. The percentages given on each axis show the percentages of variance explained. PC 
analysis conducted on the CHROMOPAINTER coancestry matrix, summed over the reference 
individuals from each country. Plotting z-order is the same as the legend. 
 
 
 
  

102 Chapter 3. Paper II



 
Supplemental Figure 5. The results of a leave-one-out SOURCEFIND analysis.​ The 
numbers indicates the mean ancestry proportion estimate for each reference country obtained 
by analysing one reference sample at a time while leaving it out and using the remaining 
samples as references.  

Chapter3. Paper II 103



 
 
Supplemental Figure 6. Assignment proportions from the leave-one-out analysis with NNLS.  ​The number in each cell 
indicates the mean ancestry proportion estimate for each reference country obtained by analysing one reference sample at a time 
while leaving it out and using the remaining samples as references.  Compared to the SOURCEFIND analysis (above), the 
self-assignment rates are slightly lower. 
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ABSTRACT

Analysis of linkage disequilibrium (LD) is key to understanding many aspects of population genetics.
The LD in a population is affected by many aspects of the populations history including past
population size and admixture. Due to these effects, current LD patterns are informative about the
past and present of populations. However, in many populations, recent admixture has a large impact
on LD patterns, potentially masking the ancestry-specific LD that existed prior to admixture.

We present LDadmix, a tool to estimate two-locus haplotype frequencies within the source ancestries
of a recently admixed population, with the goal of recovering the LD patterns within each ancestry
source prior to the admixture event. It requires only unphased genotype data and estimates of
admixture proportions for a set of samples from an admixed population. We apply LDamix to
simulated data, as well as data from admixed human populations in the Americas, to assess its
accuracy and demonstrate its utility by estimating r2 decay curves for each ancestry of a recently
admixed population. In the Americas, we recover an elevated LD decay curve for the ancestral
American ancestry, after accounting for recent African and European admixture.

LDadmix is available as an open source Python program hosted at https://github.com/rwaples/
LDadmix. The software uses common data file formats (bed/bim/fam) and is suitable for analysis on
data set with thousands of individuals and millions of pairs of loci.

Introduction

Linkage disequilibrium (LD) is the nonrandom association between alleles at different genomic loci. Across the genome,
LD is driven by a combination of local genomic factors e.g., sequence motifs guiding recombination (Grey, Baudat,
and de Massy 2018), and selection (Kawakami et al. 2014) as well as demographic factors such as genetic drift and
admixture that have a genome-wide impact (Slatkin 2008). LD plays a vital role in the study design of many different
types of investigations, as it provides information about the statistical (Pritchard and Przeworski 2001) and genealogical
(McVean 2002) independence of genetic variation across the genome.

LD patterns can also help us understand the past and present of a population, since the LD patterns of a population have
been shaped by its demographic history (Pritchard and Przeworski 2001). For example, LD across different genomic
distances can be used to make inferences about past population size changes (Tenesa et al. 2007; Myers, Fefferman, and
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Patterson 2008; Ragsdale and Gutenkunst 2017), and recent effective population size (Ne) (Hill 1981; Waples and Do
2010). Broadly, the methods for performing such inference relate observed LD patterns to a time series of Ne values by
balancing the effects of genetic drift, which can create LD, and recombination, which partially breaks down exisiting
LD each generation. Even simple summaries of LD, like mean r2 for pairs of loci at different distances, here called a
LD decay curve (Sved 1971; W. G. Hill and Weir 1988), contain a lot of information about a population’s history, with
higher r2 signalling lower Ne. Comparing the LD decay curves of two or more populations can be a way to see if they
share similar demographic histories. However, caution is required with small sample sizes, as they induce a bias in
r2 of approx. 1/n, with sample size n (Weir and Hill 1980).

In a similar manner, LD, and LD decay curves, can help us learn about admixture in both archaic (Plagnol and Wall
2006; Ragsdale and Gravel 2018) and more recent timescales (Moorjaniet al. 2013; Loh et al. 2013; Hellenthal et
al. 2014). This is very important because, beyond the recent past, admixture seems nearly universal among human
populations (Hellenthal et al. 2014) and is common and or underestimated in many other species (Supple and Shapiro
2018). When two or more populations mix, the process of admixture affects LD, with the LD post-admixture a function
of the LD within each admixing population, the allele frequency differences between populations, the admixture
proportions, and time since admixture (Chakraborty and Weiss 1988).

The effect of demography and admixture on LD is illustrated in Figure 1. We see that a population that has gone
through a bottleneck (simulated East Asian) has an LD decay curve that is higher and flatter at short genetic distances,
compared to a population that has not (simulated West African), with lower LD and a steeper decay at short distances.
Furthermore, in the LD decay curve for the population that is an admixture between the two other populations, we see
a transition between two LD regimes. At shorter distances, where there is considerable background LD within each
source population, the admixed population has intermediate r2 values. At longer distances, there is little background
LD present in the source populations, and the admixed population has more LD than either source population.

Unfortunately, due to its effect on LD, admixture can obscure the ancestry-specific LD that existed prior to admixture
(e.g. Moltke et al. 2015), and with only access to samples from an admixed population, the pre-admixture LD within each
source population is difficult to recover. In turn, this means that it is difficult to recover ancestry-specific demographic
factors, and complicates the interpretation of LD decay curves in admixed populations.

The confounding of admixture-induced LD with LD that existed prior to admixture is evident in several real populations.
The LD decay of the Greenlandic Inuit, a population isolate with extensive LD and significant European admixture is
very different when measured across a random sample of the population versus a set of unadmixed individuals of Inuit
descent (see Figure 6 of Moltke et al (2015)). There are also admixed population samples in the 1000 Genomes (1000G)
(1000 Genomes Project Consortium et al. 2015). In fact, the Native American populations included in the 1000G are all
admixed, making it difficult to interpret their LD decay curves (e.g. extended data figure 10 of 1000 Genomes Project
Consortium et al. 2015). As a group, their LD decay curves are both above and below those of European and East Asian
populations, complicating a demographic interpretation. Based on such data is it unclear to what extent the pattern of
LD decay reflect the demographic history of the Native American ancestry, and to what extent do they reflect the recent
history of admixture with African and European populations.

Here we present software to estimate two-locus haplotype frequencies within the source populations of recently admixed
populations, based on a model first presented in Moltke et al (2015), and developed further here. This method takes
as input genotypes and admixture proportions for a set of individuals and produces estimated frequencies for the four
possible two-locus haplotypes within each admixture component. The process to estimate these haplotype frequencies
from a set of samples is 1) genotype the samples at a set of loci, 2) run ADMIXTURE (Alexander, Novembre, and
Lange 2009) or a similar program to fit an admixture model with appropriate K, and 3) run LDadmix to estimate the
haplotype frequencies within each of the K ancestries. Established two-locus LD measures such as r2 and D are also
calculated for each ancestry by LDadmix.

2
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Figure 1: Illustration of some effects of demography and admixture on LD decay curves. LD decay curves for a
simulation of an admixed population and its two source populations. One of these source populations (East Asian) has
been simulated to have gone through an out-of-Africa like bottleneck and one that has not (West African). Each line
shows r2 decay in a single population with increasing distance between loci. The green and orange lines show LD in the
source populations, while the blue line shows LD in a population that is an mixture of the two source populations. Both
the large plot and the inset present the same data, shown on different scales. The large plot shows distance up to 300Kb,
beyond which the background LD in each source population is minimal; the inset plot is log scaled on both axes and
extends the distance to 10M bp. The haplotypes and admixture were simulated using the coalescent and an out-of-Africa
demographic model; 800 haplotypes were sampled from each population. See methods for a full description of the
simulation procedure.

The data requirements for LDadmix are much lower than alternative methods to estimate ancestry specific-LD from
admixed samples. We are not aware of any other method to accomplish this directly, but one possible method is to mask
ancestry tracts from non-target ancestries via local ancestry inference. Unfortunately, the best-performing methods of
local ancestry inference (e.g. Maples et al. 2013) require phasing as well as reference haplotypes from each possible
ancestry. LDadmix requires neither phased data or ancestry references, and is likely most useful when there is no large
set of reference haplotypes or unadmixed individuals available.

Below we apply LDadmix to estimate LD decay curves in both simulated and real data sets. First, we examine its
accuracy on simulated data, and then we shift to an analysis of admixed human populations from the Americas. In
the Americas, we attempt to recover the ancestral pattern of LD in the Native American ancestry component while
accounting for recent admixture with African and European ancestry components.

Materials & Methods

Model

Following Moltke et al. (2015) we assume we have genotype data G for n individuals from a population that is an
admixture of K source populations and take the the likelihood of the haplotype frequencies in the source populations p
as:

3
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P (G|p, α) =
n∏

i=1

∑

h∈h(Gi)

K∑

k1=1

K∑

k2=1

pk1

h1
pk2

h2
αk1
i α

k2
i . (1)

Here pkj denotes the frequency of haplotype j for the kth population, αk
i denotes the admixture proportions of individual

i in the kth population, and h = (h1, h2) is the unobserved pair of haplotypes for an individual, with the two haplotypes
originating from the unobserved ancestral populations k1 and k2, respectively. Finally, the term h(Gi) denotes the set
of pairs of haplotypes that are consistent with the observed genotype.

We use an expectation-maximization (EM) algorithm to find the haplotype frequencies that maximize this likelihood,
by alternately updating the estimates of the haplotype frequencies (M-step) and the contributions of each individual
given their admixture proportions and genotypes (E-step). We start the EM with a random initialization of haplotype
frequencies and continue until the change in likelihood falls below a threshold value (default = 1e-6). This formulation
provides a natural extension to any number of admixing populations and with only a single population, reduces to the
method of Excoffier and Slatkin (1995).

Note that this model is designed to be applied to pairs of loci that are relatively close in the genome; we assume that
each two-locus haplotype originates from a single ancestral population, with the same ancestry at both sites. This does
not account for any recombination that has occurred since admixture that could generate two-locus haplotypes with a
distinct ancestry at each site. The assumption of no recombination is unlikely to be strictly true, but is reasonable as long
as the admixture is recent and the loci are unlikely to recombine in each generation. Low levels of recombination are
unlikely to drastically alter haplotype frequencies, and so have a limited effect on most LD measures at small genomic
distances. However, the effect of limited recombination will depends on the choice of LD measure, and will also have
the largest effect on LD with rare alleles.

Simulated Data

Simulation of out-of-Africa scenario with admixture. To produce the example admixture scenario illustrated in
Figure 1, we generated samples from an out of Africa demography (Gutenkunst et al. 2009) using msprime (v7.0)
(Kelleher, Etheridge, and McVean 2016), setting background migration rates to zero for the most recent 100 generations.
Specifically we sampled from a West African-like population and an East Asian-like population, as well as a novel
admixed population, created in a single pulse admixture event three generations prior to sampling, with 30% ancestry
from West Africa and 70% from East Asia. We simulated a 100M bp chromosome, with recombination and mutation
rates both equal to 1e-8 per bp. From each source population and the admixed population (“West African”, “East Asian”,
“Admixed”), 800 haplotypes were sampled and for each set of haplotypes we applied a 5% minor allele frequency
(MAF) filter, and selected 50K variable sites at random. The haplotypes from each population were used to calculate
mean r2 in 5kb distance bins. For better illustration of the extent of admixture LD, we extended analysis to locus pairs
separated by up to 10M bp.

Simulation to assess LDadmix. Simulated data to assess LDadmix were generated by sampling two-locus haplotypes
from 1000 Genomes phased data. To construct data for an admixed population consisting of 200 individuals we sampled
from haplotypes present in 100 individuals from each of the West African Yoruban Nigerian population (YRI) and
the Chinese Han from Beijing (CHB) population samples. We treat each pair of loci separately, using the 200 two-
locus haplotypes from each population to construct an admixed population of 200 diploid individuals, utilizing all
haplotypes. The simulated admixed individuals were assigned haplotypes from each population based on their admixture
proportions.

We assessed the performance of LDadmix on two different distributions of admixture proportions, representing distinct
admixture scenarios. In each case the mean expected ancestry proportion from each population was 0.5, but the cases
differed in how the ancestry was distributed across individuals. In the first case, admixture proportions for the first
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population were sampled from a high variance beta distribution (α = 0.1, β =0.1) (Figure 2A). In the the second case,
admixture proportions for the first population were sampled from a uniform (0,1) distribution (Figure 2B). Simulated
individuals were assigned an admixture proportion for each scenario that was held constant across all pairs of loci.
The two-locus haplotypes from YRI and CHB were assigned to the simulated individuals using a rejection sampling
procedure to ensure that all 200 haplotypes from each source population were utilized. For each individual, the number
of haplotypes from the first population was selected based on a two draw binomial distribution parameterized with the
admixture proportions described above.

(A) Beta ancestry distribution
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Figure 2: Bar plots of the admixture proportions in the two simulation scenarios. Each plot shows the admixture
proportions for 200 individuals, drawn from a distribution with expected proportion of the first population of 0.5: A)
ancestry proportions drawn from a beta(0.1, 0.1), B) ancestry proportions drawn from a uniform (0,1).

We used phased data from 100K SNP sites randomly selected from chromosome 18. Starting from the 1000 Genomes
phased vcf files, we selected di-allelic sites with a minor allele count of at least two across all populations. From this set
of SNPs, we selected 100K sites at random. By using real data as the basis for simulated admixture, we capture some
of the complexities present in the LD of real populations while also retaining the ability to have a true sample LD to
compare against.

In addition, we applied LDadmix to test a few additional cases where it should be more difficult or easier to resolve
ancestry-specific LD patterns. Specifically, we evaluated performance under a more even ancestry proportion distribution,
given by a triangle distribution with mode=0.5, min=0.25 and max=0.75 (Supplementary Figure S2). This distribution
provides much less information about the ancestry source of each haplotype than the alternatives tested above, and so
should be a difficult test for LDadmix. We also evaluated the effect of supplementing with additional unadmixed samples
from one of the source populations: after the rejection sampling procedure for each pair of loci, we supplemented
the data set supplied to LDadmix with genetic data from eight unadmixed YRI individuals. This provides additional
information about the haplotype frequencies for the YRI ancestry component and should therefore aid in LD estimation.

1000 Genomes data

We selected four admixed American population samples with significant Native American ancestry: PEL - Peruvians
from Lima, Peru, CLM - Colombians from Medellin, Colombia, PUR - Puerto Ricans from Puerto Rico, and MXL -
Mexican Ancestry from Los Angeles USA. We combined these population samples with 11 other population samples
selected to include African, European, East Asian, and Native American ancestries: ACB, ASW, LWK, YRI, CEU,
IBS, GBR, FIN, CHB, CDX, CDX, CHS. We fit a K=4 admixture model on this set of individuals with ADMIXTURE
(Alexander, Novembre, and Lange 2009). Using the results of this admixture model, we selected a reduced set of
individuals where a K=3 admixture model seemed reasonable by excluding the CDX, CHS, and CHB individuals, the
FIN individuals, the ACB and AWK population samples, as well as seven American individuals estimated to have more
than 5% Asian ancestry. On this set of 844 individuals from 9 population samples, we fit a K=3 admixture model with
ADMIXTURE, and used the admixture proportions estimated here and genotype data as input to LDadmix.

We also constructed six further datasets by excluding groups of individuals from the above K=3 dataset to examine to
what extent they were driving the results. To make these data sets, we excluded individuals in two ways: 1) dropping all
American individuals except those from each of the four America populations in turn: PEL, MXL, PUR, CLM, (4 sets)
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and 2) dropping individuals from the population with the most Native American ancestry, PEL, either all of them, or
just the 18 samples with more 99% Native American ancestry (2 sets). We applied LDadmix to each of these data sets
using the admixture proportions estimated from the full K=3 dataset.

To construct genotype data sets for the above analyses, we first extracted eligible di-allelic sites from the 1000G phase 3
vcf files aligned to GRCh37 (available at http://www.internationalgenome.org/). Then for each LDadmix analysis, we
selected the appropriate individuals, applied a minor allele count filter of 2, and took 500K sites at random. To construct
a dataset for each ADMIXTURE analysis, we selected the appropriate individuals, applied a minor allele frequency
filter of 0.05 to the eligible sites, and took 500K sites at random. We ran ten replicates of each ADMIXTURE analysis,
selecting the run with best likelihood, and checking for convergence by checking for multiple other runs within 2 log
likelihood units.

LD decay estimation

For both the simulated and real data sets we applied LDadmix to all pairs of loci separated by up to 300kb, stopping the
EM when the log likelihood changed by less than 1e-6. From the estimated haplotype frequencies, we calculated three
LD measures (r2, D, D′) within each ancestry, but focused on r2.

For each data set we also calculated LD with existing methods for comparison. For the simulated data, we calculated
‘true’ LD values from the phased haplotypes from each population, representing the LD present in this sample. For the
real data, we estimated LD within each population sample separately using the method of Gaunt, Rodríguez, and Day
(2007) as implemented in PLINK (v1.9) (Chang et al. 2015), which produces very similar estimates to the EM model
above to a single-population (data not shown).

When summarizing LD, we restrict the analyses to pairs of loci where both sites are estimated to have MAF >0.05. For
ancestral populations, we estimated the MAF from the haplotype frequencies estimated by LDadmix. The goal of the
MAF filter filter was to ensure that only variable sites are considered within each ancestry, and also to reduce the effect
of rare alleles.

To generate r2 decay curves, we calculated a 5kb unweighted moving average over distances, assigning the mean r2

value for each window to the midpoint, so the decay curve covers the distance from 2.5kb to 297.5kb.

For the simulated data, we calculated the deviation between the true and estimated r2 values with two different measures:
root-mean-square deviation (RMSD) and mean bias. We calculated these deviations across the entire data set and in
non-overlapping 5kb distance windows.

Results

Application to simulated data

First, we examined the accuracy of LDadmix by applying it to simulated data. To generate the simulated data sets,
we sampled existing two-locus haplotypes from two population samples from the 1000 Genomes; YRI and CHB, and
combined them into an admixed diploid population. Haplotypes were assigned to individuals based on the admixture
fraction (Q) assigned to each individual, using a rejection sampling procedure (see methods). To explore the effect of
the Qs, we used two different sets of Qs, both with a mean ancestry of 0.5: a set of Qs sampled from a higher variance
beta distribution (α = 0.1, β=0.1) and a set of Qs sampled from a lower variance uniform distribution, both shown
in Figure 2. The LD decay curves for each of the YRI and CHB source population samples, as well as the simulated
admixed data are shown in Supplemental Figure S1.

We applied LDadmix to the two simulated admixed datasets using the known sets of Qs and obtained LD estimates
for 34M pairs of loci separated by less than 300kb for each of the two ancestry source populations. We here report
r2 for approx. 3M pairs of loci within each ancestry with both loci estimated to have minor allele frequency (MAF)
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>0.05 and compare the resulting LD decay curves to those of the YRI and CHB source population samples to (Figure 3).
Comparison to the LD decay curves estimated from YRI and CHB shows that LDadmix is able to recover the specific
shape of the LD decay for both source populations, especially at distances less than 100kb (here equivalent to 0.1 cM),
for both sets of Qs (Figure 3). At larger distances (100kb<x<300kb), with less LD in each source population, LDadmix
also recovers the shape, but we see some upward bias in the estimates of r2 (insets of Figure 3). Overall, our bias when
estimating r2 was positive, except in the highest LD bins of the CHB population, where we slightly underestimate true
LD.

To quantify the accuracy of the estimates, we calculated RMSD and bias in distance bins of 5kb, or across all pairs as
appropriate, using the LD from YRI and CHB as the truth. The two populations have some differences in their patterns
of RMSD and bias. We see the population with less LD (YRI) has a more constant RMSD and mean bias across distance
bins, while the population with more LD (CHB) has more variation in RMSD and bias (Figure 4). Also, while RMSD is
consistently higher across all distance bins in the CHB populations, bias has a more complicated pattern that depends
on distance.

Although the same haplotypes are used in both simulated scenarios there is an effect of the two different sets of admixture
proportions, with overall RMSD and bias both higher in the uniform(0,1) scenario where the admixed individuals have
more similar admixture proportionsRMSD 0.018 vs 0.036, bias 0.004 vs 0.009]. This effect is consistent across the
range of distance bins examined (Figure 4), with the RMSD and bias of the beta ancestry distribution consistently lower
for both populations across the range of distances. Across both analyses and both populations, RMSD is slightly smaller
for loci at further distance (i.e. loci with lower mean r2), but the bias is a bit higher (Figure 4).
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Figure 3: Estimated LD decay curves for both source populations in each of two simulated datasets. The red and
yellow lines show mean estimated r2 values in 5kb distance bins, the green and blue lines show the ‘true’ sample r2
within each source population. The large plot shows the 5kb unweighted moving average of r2, up to 100kb with a
linear scale, while the inset plot extends the distance to 300kb and log-scales both the x- and y-axes. A) results for
individuals simulated with a beta(0.1, 0.1) distribution of ancestry proportions, B) results for individuals simulated
with a uniform(0,1) distribution of ancestry proportions.
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Figure 4: Scatterplots of RMSD, and mean bias in estimated r2, in the two simulated scenarios. Orange points show
deviations for the YRI, blue dots show the deviations for CHB, calculated in 5kb distance bins. The left column shows
results for individuals simulated with a beta(0.1, 0.1) , the right column shows results for individuals simulated with a
uniform(0,1) ancestry distribution.

To further investigate the effect of the ancestry distribution across a broader range of cases, we evaluated two additional
simulation scenarios: 1) a low variance triangle ancestry distribution, with most individuals having close to the mean Q
value of 0.5 (Supplemental Figure S2), and 2) supplementing all previous scenarios with eight additional unadmixed
individuals from YRI, mimicking a case when additional samples from one source population are available.

Our ability to estimate r2 when all individuals are near the mean ancestry proportion (triangle distribution) is significantly
impacted, with consistently high RMSD and large mean bias across nearly all distance bins (Supplemental Figure
S2). While were are able to identify the presence of a high LD and low LD population, the r2 estimates for these two
populations are biased towards each other at short distances, likely reflecting our inability to resolve their distinct
haplotype frequencies. The asymptote of estimated r2 for these two populations is also elevated, compared to the other
sets of Qs. With the addition of eight additional unadmixed YRI individuals, we see a consistent reduction in RMSD in
all scenarios and in both populations. The RMSD was reduced (0.182 vs 0.184) in the beta distribution, and was further
reduced (0.033 vs 0.036) in the uniform ancestry distribution (Supplemental Figures S3, S4).

Application to 1000 Genomes data

To illustrate the utility of LDadmix, we applied it to admixed human populations from the Americas with the aim of
recovering the ancestral pattern of LD in the Native American ancestry component while accounting for recent admixture
with Africans and Europeans. In particular, we estimated LD decay in the Native American ancestry component of
four populations from the 1000 Genomes project (PUR n=104, MXL n=61, PEL n=81, CLM n=94). To do so we first
characterized the admixture in these populations with a K=3 unsupervised admixture analysis applied to samples from
these American populations combined with three European and two African populations (Figure 5). The sum of the
ancestry fractions for each ancestry are Native American: 138, African 233, and European 473. Notice that the majority
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of the Native American ancestry component occurs in admixed individuals containing all three ancestry components, in
contrast to the other ancestries. In fact, only 19 Native American individuals are estimated to be unadmixed, with more
than 99% Native American ancestry: 18 from PEL and one from MXL. We then estimated the LD decay in each of the
three ancestry components (American, African, European) shown in Figure 3A, by applying LDadmix to the genetic
data as well as the estimated ancestry fractions (Figure 5).

To assess and interpret the results we first compared these curves to LD curves estimated directly from the African,
European and Native American populations. Importantly, we find that the LD decay curves for the African and European
ancestry components estimated by LDadmix coincides with the LD decay curves estimated from unadmixed samples
(Figure 6A). This match is especially close for loci located close to each other, while at larger distances LDadmix
estimates lower mean r2 than we see in each individual population from each ancestry, likely due to the increased
sample size in the combined analysis. We also see a similar pattern for the Native American ancestry if we compare it to
the LD decay in the 18 unadmixed individuals from PEL, with a relatively close match at shorter distances that becomes
worse at larger distance. However, here a direct comparison is more difficult because there are so few unadmixed Native
American samples available and r2 estimates are biased upwards with small sample sizes (Weir 1979). All in all, these
observations support our simulation results in the sense that is suggest that LDadmix is providing meaningful LD decay
curves.

Next we compared the LD decay curves obtained with LDadmix to LD decay measured within each of the admixed
American populations alone using standard estimates of r2 (Figure 6B). Among the admixed populations, the PEL
population has the highest amount of LD, and also the highest fraction of Native American ancestry, and is closest to
the LD estimated by LDadmix for Native American ancestry. The LD decay curves for the other American populations
(MXL, CLM, PUR) all fall close to the r2 values for the European ancestry, especially for loci at close distances, despite
a having a very different demographic history from European. This may reflect the fact that these population samples
have a substantial African and European admixture (Figure 5). At longer distances, these American populations have
higher LD than Europeans, likely due to a combination of their history of admixture, smaller longer termNe and reduced
sample size in the data set. Notably, for all the admixed American populations, r2 estimated with PLINK is below the
r2 estimated by LDadmix for the Native American ancestry across the entire range of distances, demonstrating that
taking admixture into account makes a marked difference in the estimation of LD decay in these populations.
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Figure 5: A) ADMIXTURE and LDadmix estimates for nine 1000 Genomes populations assuming three ancestral
populations. Bar plot of a K=3 ADMIXTURE analysis of nine population samples from the 1000 Genomes. Green
shading shows the estimated proportion of Native American ancestry, red shading shows the estimated proportion
of African ancestry, blue shading shows the estimated proportion of European ancestry. Individuals are sorted by
population sample (labels along the top) and then by the estimated proportion of Native American ancestry. B) LD
decay curves estimated with LDadmix for the three ancestry components shown at the top, with matching colors. The
large plot shows the 5kb unweighted moving average of r2 with a linear scale, while the inset plot log-scales both the x-
and y-axes.
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Figure 6: A) Standard LD estimates for nine 1000 Genomes population samples, plotted alongside LD decay curves
estimated with LDadmix for the three ancestry components (Figure 5). The dark green line shows LD decay measured
across 18 unadmixed individuals from PEL, representing an unadmixed sample from Native American ancestry. African-
ancestry population samples are in red-yellow shades, European-ancestry populations are in blue-grey shades. The large
plot shows the 5kb unweighted moving average of r2 with a linear scale, while the inset plot log-scales both the x- and
y-axes. B) LD decay for four American populations samples from the 1000 Genomes, plotted alongside LD decay
curves estimated with LDadmix for the three ancestry components shown in Figure 5. The dark green line shows LD
decay measured across 18 unadmixed individuals from PEL, representing an unadmixed sample from Native American
ancestry. Other American populations samples are shown in shades of green. The large plot shows the 5kb unweighted
moving average of r2 with a linear scale, while the inset plot log-scales both the x- and y-axes.
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To test the robustness of the LD decay curve estimate obtained for the Native American ancestry component we also
tried to apply LDadmix to the data without including the 18 unadmixed PEL individuals. This gives very similar results,
suggesting that the LD estimates are not simply driven by the presence of these individuals (Supplemental Figure S5).
We also applied LDadmix including only one American population at a time. The LD decay estimated for the Native
American ancestry when the PEL individuals were the only included Americans was similar to the estimates obtained
when the MXL, CLM and PUR individuals were also included, but the separate analysis of the other population samples
provided less useful results (Supplemental Figure S6). These differences are likely due to the limited amount of Native
American ancestry in the other population samples.

Software Availability

We have implemented LDadmix in a Python 3.X command line program. The program uses common file formats, and
requires genotype data in binary PLINK format (link) as well as estimates of admixture proportions in the file format of
ADMIXTURE (Q files). The program utilizes multiprocessing and is fast enough to be used on data sets with millions
of pairs of loci. Shown in Table 1 are running times and peak memory usage using LDadmix to estimate LD at 1M pairs
of loci in the 1000G K=3 dataset (n=844, L=500K), described in the manuscript. LDadmix is open source and available
on github: https://github.com/rwaples/ancLD

Table 1: Running time and memory usage of LDadmix, as a function of number of cores on an example dataset.
LDadmix was applied to a binary PLINK fileset with 844 individuals and 500K loci, and asked to estimate LD at 1M
locus pairs.

Cores Peak memory usage (GB) Running Time (seconds)

1 8.3 4210
4 8.4 1172

16 8.5 394
64 8.4 200
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Discussion

We have presented a software tool, LDadmix, that can provide estimates of LD in each of the ancestry sources of a
recently admixed population. It requires only unphased genotype data and estimated admixture proportions for samples
from the admixed population. Using simulated data, we have shown that the method can provide estimates of r2 decay
curves that are very close to those estimated from the true source populations for each ancestry in a K=2 admixture.
Finally, by applying LDadmix to data from the 1000 Genomes project we obtained novel results for the Native American
population ancestral to Peruvians, Mexicans, Colombians and Puerto Ricans as well as further insights into the benefits
and the limitations to LDadmix.

Application to simulated data showed that the accuracy of the LD decays curves obtained with LDadmix depends on
the distribution of admixture proportions. This makes sense, because compared to LD estimation methods that do not
account for admixture, LDadmix has an additional challenge, as the source ancestry of each two-locus haplotype is not
known, but rather the uncertainty is modeled probabilistically using the global ancestry fractions for each individual. In
this model, a higher variance in admixture proportions values across individuals, provides more information about the
source ancestry of each haplotype. Indeed we see that the presence of some essentially unadmixed individuals leads
to more accurate LD estimates (Figure 2), and encouragingly, we also see that LDadmix is able to provide LD decay
curves that are quite close to the truth, even when very few -if any- unadmixed samples are available (Figure 3B) as
long as the samples do not all have similar ancestry proportions (Supplemental Figure S2). Furthermore, we see that
including additional unadmixed samples from just one of the ancestral population seemed to improve LD estimates for
both ancestral populations, suggesting a potential way improve results if one of the source populations is easy to get
unadmixed samples from (Supplemental Figures S3, S4).

The simulation results also suggest that LDadmix performs a bit worse (higher absolute bias, higher RMSD) as loci get
further apart and have less LD, for a few reasons. First, there is a greater chance of recombination between the loci
since admixture, violating a key assumption of the model underlying LDadmix. Second, and more importantly, with
less LD in the source populations, biases in LD estimation due to sample size contribute a larger fraction of the overall
LD. Generally, when interpreting LD decay curves one should be cautious when using a low number of individuals.
When using LDadmix to estimate LD for pairs of loci this issue is even more important since the effective number of
individuals will be lower than the actual number of individuals, and dependent on the ancestry proportions. This should
especially be taken into account when interpreting loci with very low amounts of LD or that are too far apart.

There are also several notable observations from applying LDadmix to admixed American population samples in the
1000 Genomes. First, the LD curves obtained with LDadmix for the African and European ancestries are very similar to
those obtained directly from each of the African and European population samples (Figure 6A). These results show
a consistent pattern of LD decay within the population samples from each continent and that LDadmix is able to
recover this pattern. These results from a complicated K=3 admixture are likely significantly aided by access to many
unadmixed European and African individuals, making it much easier to characterize the haplotype frequencies in these
ancestries, and leaving the haplotype frequencies in the Native American ancestry as the principal unknown.

Second, although it is difficult to completely validate the LD decay curve obtained with LDadmix for the Native
American ancestry due to the lack of unadmixed individuals, it does seem reasonable for several reasons. One reason
is that this LD decay curve lies above all the LD curves obtained by estimating LD in these groups in the standard
way without accounting for admixture (Figure 5). And importantly, the LD decay curves for these admixed American
populations follow a pattern that those with the most European and African ancestry (PUR and CLM), have the lowest
LD, closer to the LD patterns seen in European and African populations, while the population samples with more
Native American ancestry (MXL and PEL) have more LD, in line with previous findings (Bryc et al. 2010). This
pattern is consistent with the LD decay curves presented in Figure 1, with values in the admixed population that are
intermediate compared to the source populations. Another reason is that, the LD decay curve obtained with LDadmix
for the Native American ancestry is consistent with the LD decay curve obtained the 18 unadmixed PEL individuals,
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although as previously explained this comparison is complicated by the small sample size. Finally, the elevated LD
decay curve for the Native American ancestry estimated by LDadmix fits very well with current historical knowledge
about the demographic history of Native American populations, including a bottleneck that is not shared by European,
African, or Asian populations (Raghavan et al. 2015). Hence, all in all we believe the results are quite reasonable and
this means that the results provide new insights into those populations, which clearly extends previous insights based on
the admixed samples.

The results from the 1000 Genomes data also demonstrate the practical difficulties in generating reasonable estimates
of LD decay in admixed populations without LDadmix. The LD within each American population is clearly affected
by admixture, as seen above, but excluding the admixed individuals leaves a reduced sample size that can impact the
results. For example, across the PUR, CLM, and MXL population samples there is only a single unadmixed individual,
making LD estimation from only unadmixed individuals in these three populations essentially impossible. And even
the PEL population sample, with 18 unadmixed individuals produced an LD decay curve with an elevated horizontal
asymptote, a signature of limited sample size, complicating a comparison to LD curves in other populations produced
with larger sample sizes.

Finally, the 1000 Genomes data analysis reveal some practical limitations to keep in mind when applying LDadmix.
The estimate of LD decay for the Native American ancestry derived from the pooling of all the Native American
population samples (Figure 5) was distinct from the results when applying LD to each American population separately
(Supplemental Figure S6). These differences in LD may reflect the distinct demographic history of each population,
however, the limited Native American ancestry within each population sample presents two further challenges to
LD estimation, both related to effective sample size, that we think are likely to have a larger effect. First, due to the
sensitivity of LD estimators to sample size, LD comparisons between populations are often matched in sample size
(see e.g. 1000 genomes paper) and this matching is especially important with lower sample sizes. However in admixed
populations, matching sample sizes becomes much more difficult, because the number of haplotypes with a certain
ancestry will vary along the genome. Second, in LDadmix the source ancestry of each two-locus haplotype is not known,
it is modelled probabilistically using the global ancestry fraction and therefore the LDadmix estimates of haplotype
frequencies and LD are associated with additional uncertainty, reducing the effective sample size of each ancestry.
This results in a further upwards bias in LD, visually evident as the horizontal asymptote in the estimated r2 values,
especially visible on the inset log-scaled plots (Figure 6, Supplemental Figures S2,S3,S6). Several methods exist that
attempt to correct for the effect of sample size on the estimation of population r2 (Weir and Hill 1980; Waples 2006;
Bulik-Sullivan et al. 2015; Ragsdale and Gravel 2019), however, it is difficult to apply downsampling and correction
methods to r2 estimates from LDadmix because there is not a single sample size across loci. It may be possible to use
the r2 value at the asymptote as a part of a future sample size correction scheme in LDadmix, however, we have not yet
managed to successfully develop such a scheme. We therefore suggest only to use LDadmix on large samples sizes, like
we did in the case of the dataset of all Native American population samples from the 1000 genomes project.

Despite this limitation we believe these results show LDadmix has the potential to be a useful tool for the analysis of
LD in admixed populations. Current studies of LD in admixed populations face a difficult choice: to either include
admixed individuals or to exclude all admixed individuals. But if admixed individuals are included in LD calculations,
the LD becomes difficult to interpret as it reflects both the demographic and admixture history of the individuals and if
admixed individuals are excluded, the available size maybe too small for useful measures of LD. LDadmix presents a
solution to this problem, by accounting for admixture in the estimation of the LD it presents the ability to better utilize
all available individuals, expanding sample sizes and improving LD estimates. Therefore, we believe it has potential to
be a useful tool in future studies – both of humans and especially in other species where large panels of unadmixed
individuals are not available.
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Figure S1: LD decay curves for source (blue and green, N=100) and admixed (admixed, n=200) populations in
simulation based analysis. The large plot shows the 5kb unweighted moving average of r2, up to 100kb with a linear
scale, while the inset plot extends the distance to 300kb and log-scales both the x- and y-axes.
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Figure S2: LDadmix applied to simulated data with the triangle (mode = 0.5, min = 0.25, max = 0.75) admixture
proportion distribution. A) Bar plot of the admixture proportions in this scenario, showing the admixture proportions for
200 individuals. B) Estimated LD decay curves for both source populations. The red and yellow lines show estimated
r2 values in 5kb bins, the green and blue lines show the ‘true’ sample r2 within each source population, as in figure 2B.
The large plot shows the 5kb unweighted moving average of r2, up to 100kb with a linear scale, while the inset plot
extends the distance to 300kb and log-scales both the x- and y-axes.
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Figure S3: Effect of adding 8 additional unadmixed YRI individuals. Estimated LD decay curves for both source
populations. The red and yellow lines show mean estimated r2 values in 5kb bins, the green and blue lines show the
‘true’ sample r2 within each source population, as in Figure 3. The large plot shows the 5kb unweighted moving average
of r2, up to 100kb with a linear scale, while the inset plot extends the distance to 300kb and log-scales both the x- and
y-axes. a) Admixture proportions for 200 individuals drawn from a beta(0.1, 0.1), b) Admixture proportions for 200
individuals drawn from a uniform(0,1), c) Admixture proportions for 200 individuals drawn from a triangle distribution
with mode 0.5, min = 0.25, max = 0.75. Compare to figure 3A, B in the main text.
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Figure S4: Effect of adding 8 additional YRI individuals. Scatterplots of RMSD and mean bias in estimated r2 in the
two simulated scenarios. Orange points show deviations for the YRI, blue dots show the deviations for CHB, calculated
in 5kb distance bins. The left column shows results for individuals simulated with a beta(0.1, 0.1) , the right column
shows results for individuals simulated with a uniform(0,1) ancestry distribution. Compare to Figure 4 in the main text.
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Figure S5: Effect of leaving out two sets of PEL individuals on LD decay estimates. a) excluding all PEL individuals,
b) excluding the 18 unadmixed PEL individuals with >99% Native American ancestry. Faint lines show the LD decay
curves estimated with LDadmix on the entire data set, matching those shown in Figure 5. Thin bright lines show the
estimates for the particular data set show on each plot. The large plot shows the 5kb unweighted moving average of r2
with a linear scale, while the inset plot log-scales both the x- and y-axes.
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Figure S6: Effect of leaving out all individuals from each American population sample. Faint lines show the LD decay
curves estimated with LDadmix on the entire data set, matching those shown in Figure 5. Thin bright lines show the
estimates for the particular data set show on each plot. The large plot shows the 5kb unweighted moving average of r2
with a linear scale, while the inset plot log-scales both the x- and y-axes. a) PEL individuals were the only American
individuals included. b) MXL individuals were the only American population individuals included c) PUR individuals
were the only American individuals included d) CLM individuals were the only American individuals included.
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Abstract
Species delimitation is one of the most contested areas in modern biology, with widespread disagreement about almost every 
aspect of the definition and implementation of the “species” label. While this debate is intellectually stimulating, it also has 
real implications for conservation, where its impacts on taxonomic inflation or inertia can mean that specific populations 
receive adequate conservation measures or are ignored. Recently, the rise of next generation sequencing and phylogenomics 
has revolutionised phylogenetic understanding of many organismal groups but has simultaneously highlighted the porosity 
of genomes in terms of admixture across previously delineated species barriers. The extraordinary power of genomic data 
is increasingly being used to delineate species, and several publications in this domain have recently attracted significant 
attention and criticism. Here we revisit the question of species delimitation, but from a genomic context. We ask how and 
whether the large amounts of data provided by genomic methods can resolve the longstanding discussion on the validity and 
application of phylogenetic and allied species concepts, and how some recent examples can inform this debate. We argue that 
conserving adaptive potential is a priority for conservation, and no single species concept currently does that adequately on 
its own. Genomic data holds the potential to add unprecedented detail, but frequently falls short of this potential.

Keywords  Genomics · Biological species concept · Phylogenetic species concept · Adaptive introgression · Hybridization

Inflation or inertia?

Due to the pivotal role of the species as the most important 
unit of biodiversity, conservation planning must be based 
on a good understanding of species number, diversity and 
endemism, measurements that only make sense within the 
context of consistent taxonomic classifications (Isaac et al. 
2004; Zachos et al. 2013). However, as a result of the many 
different epistemological views on the species concept (e.g. 
Avise and Ball 1990; Wheeler and Platnick 2000; Baker and 
Bradley 2006), and due to the gradual process of evolution-
ary divergence, there is a continuum of genomic divergence 
patterns and estimates for which different researchers would 
consider speciation to be ‘complete’ (DeQueiroz 1998). 
Some evolutionary biologists have classified populations 
as the same species unless strong evidence to the contrary 
exists, e.g. reproductive incompatibility or reciprocal mono-
phyly (with the archaic term ‘lumpers’; Heller et al. 2013). 
The genealogical concordance method of phylogenetic spe-
cies recognition (often known as the genealogical species 
concept, or GSC; Avise and Ball 1990; Baum and Shaw 
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1995), as well as the Biological species concept (BSC), often 
result in a high threshold of species recognition. The GSC 
usually considers two populations to be designated species 
only when they are “isolated long enough [that] all gene-
genealogies will be concordant” (emphasis ours; Baum and 
Shaw 1995). This concept has been criticized for its stringent 
nature, as it, for example conflicts with the observed incom-
plete lineage sorting and admixture between the genomes of 
some well-recognised species (for example lineage sorting in 
Ursine bears, Kutschera et al. 2014; and apes; Mailund et al. 
2014; and introgression between chimpanzees and bonobos 
deManuel et al. 2016; within gulls; Sonsthagen et al. 2016; 
and geese; Ottenburghs et al. 2017).

In contrast, other evolutionary biologists set the threshold 
for recognition of new species, much lower (i.e. so-called 
‘splitters’, the past antonym of ‘lumpers’) whose approach 
is usually via the use of the Phylogenetic Species Concept 
(PSC). The PSC defines species as “the smallest aggregation 
of (sexual) populations or (asexual) lineages diagnosable 
by a unique combination of character states” (Wheeler and 
Platnick 2000). This method of classification is much less 
stringent and it could be argued that any intra-specific popu-
lation genetic structure should result in the fulfilment of the 
requirement of “a unique combination of character states”. 
It has therefore been criticized for increasing the number 
of recognized species beyond what would seem justified, 
known as ‘taxonomic inflation’ (Heller et al. 2013; Zachos 
2013; Zachos et al. 2013).

Recently, Gippoliti et al. (2017) describe the opposing 
argument that ‘taxonomic inertia’ is actually more detri-
mental to conservation, highlighting the case of African 
ungulates. They argue that the history of African ungulate 
taxonomic classification has been dominated by ‘lumpers’ 
who, when faced with difficult taxonomic decisions, have 
avoided the situation by assigning a large number of subspe-
cies or genetic lineage labels. According to the authors, this 
has led to a disproportionately small number of ungulate 
species being recognised in Africa [despite Africa being by 
far the leading continent in terms of recognized ungulate 
species richness (Heywood 2010)]. Key to the argument of 
Gippoliti et al. (2017) is a survey by Morrison et al. (2009), 
which showed that taxonomic splitting has a positive effect 
on conservation. Morrison et al. (2009) identify numerous 
situations where a change in taxonomy has led to increased 
conservation efforts. One representative example is the 
California gnatcatcher, Polioptila californica Morrison et al. 
(2009) highlight the increase in conservation funding (better 
habitat protection and monitoring programs) that this species 
received after recognition of its species status. However, a 
change in protection (conservation) in this study was defined 
in Morrison et al. (2009) as “increased or decreased monitor-
ing of any kind”, as well as “increased or decreased funding 
for research on the respective organism”. This argument only 

considers the organism in question, not conservation actions 
as a whole. This overlooks an obvious concern, namely that 
conservation resources are finite (although not necessarily 
constant), and that resources allocated to one species do 
not necessarily benefit others. This is the ‘Agony of choice’ 
argument (Isaac et al. 2004), which refers to the greater chal-
lenge of assigning limited conservation resources between 
higher numbers of taxa. Gippoliti et al. (2017) also state 
that there is “no evidence for negative effects of taxonomic 
splitting on conservation”. It could be argued, however, that 
this hypothesis would be very difficult to empirically support 
either way. It is not currently known precisely how much is 
being spent on conservation globally (McCarthy et al. 2012), 
let alone the relative amounts that are being spent on each 
taxonomic group. In an ideal scenario, all units of diversity 
would be conserved however, even in countries that allocate 
a relatively large budget to conservation efforts, this is rarely 
possible (Malaney and Cook 2013), and even a prioritization 
approach may not be being practised (especially when it con-
flicts with other political priorities migration, denver post). 
It therefore seems very likely that conserving the eleven spe-
cies of klipspringer proposed by Groves and Grubb (2011) as 
separate taxa would require more resources than conserving 
the one klipspringer species, Oreotragus oreotragus, com-
monly recognised (e.g. Kingdon 2013). In conservation (spe-
cifically in the IUCN context), a particular machinery comes 
into play when a new species becomes known, including 
making species status assessments, a species survival plan 
including in situ and ex situ measures (if deemed necessary 
for the species). All of these obviously require resources, 
and this is before even expending resources on the actual, 
practical conservation measures for the species.

Another argument for why over-splitting may be detri-
mental for particular taxonomic groups, Frankham et al. 
(2012) focused on three widely used species concepts: the 
Biological (Mayr 1942, 1963), the Evolutionary (ESC; 
Simpson 1951, 1961; Wiley 1978) and Phylogenetic 
(Eldredge and Cracraft 1980; Cracraft 1997) Species Con-
cepts. Frankham et al. (2012) emphasised the point that 
diagnosably different population units are not intrinsically 
reproductively isolated (the importance of reproductive 
isolation is discussed in detail later), and that this is par-
ticularly relevant for small, allopatric populations. This is 
because the time in which a population attains alleles that 
make it distinguishable in e.g. multivariate genetic space 
will be proportional to their effective population sizes 
(Ne), and may be very short if Ne is low. The implica-
tion of this is that populations of the greatest conservation 
concern may be more likely to be diagnosed by the PSC. 
It should be noted that this argument is only referring to 
the conservation implications of the species concept used, 
and not an assessment of which is “correct”.
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It seems clear that both “taxonomic inflation” and 
“taxonomic inertia” could be detrimental to conservation. 
This is because implicit in those descriptors is an assump-
tion that the populations in question have been artificially 
“grouped” more or less than what would be ideal under 
any given criterion (also keeping in mind that different 
criteria might not lead to the same “ideal” grouping!). 
Conservation (and in particular its genetic component) 
is predominantly a pragmatic discipline, which for popu-
lations threatened with extinction, a primary concern is 
assessing whether re-joining populations (and therefore 
gene flow) is possible and deciding whether those popula-
tions should still be connected. These decisions are usually 
based on taxonomy, with the assumption that it is related 
to whether the populations are likely to be reproductively 
isolated, and to what extent they have unique adaptations 
to their local environment. However, this assumption may 
be correct or incorrect, depending on the premise of the 
species criterion used (see “Which species concept best 
conserves adaptive potential?”). This raises three impor-
tant distinctions that need to be made when a decision is 
reached about what constitutes a species:

1.	 Distinguishing species
2.	 How they are diagnosed
3.	 Classification, i.e. how they are ranked

Point one is an ontological question, i.e. what one consid-
ers a species to actually be. Point two is a question of imple-
mentation: a technical/financial hurdle that is imposed based 
on the species concept that is chosen. Point three could be 
referred to as a “convention of organization”, and depends 
on where any given organization chooses to delimit taxo-
nomic boundaries. This framework links to the difference 
between a concept and a criterion, two terms that are fre-
quently conflated in species discussions: a species concept 
relates to point one, and a species criterion relates to point 
two (De Queiroz 1998).

Some authors may argue that certain criteria are invalid 
because they do not identify units that they believe to be 
“real” species, however this can be countered by defining 
criteria as a concept, and thereby essentially redefining what 
a species is to fit in with a given criterion. It has been argued 
that all species concepts have a single common concept, 
namely that species can be equated with “segments of pop-
ulation-level lineages” (De Queiroz 1998, 1999), or groups 
of organisms with their own “independent evolutionary 
fate and historical tendencies” (Mayden 1997). Under this 
framework, the so-called general lineage concept (GLC), it 
is argued that alternative species concepts are either varia-
tions of the GLC, or criteria of it. While this is a compelling 
argument, in the sense that it relates to ontology, it could still 
be considered a matter of opinion.

In an attempt to make the definition of species less arbi-
trary, increasingly sophisticated methods have been pro-
duced to delineate species. Developments in coalescent 
theory has allowed for the investigation of lineage diversi-
fication (Yang 2015). Other methods for molecular species 
identification include Bayes factor-based species delimita-
tion (Grummer et al. 2014). These methods, based on differ-
ent criteria/theories, test species boundaries in a compara-
tive way (Toussaint et al. 2016). However, the multispecies 
coalescent has also been criticised for only being a method 
to “delimit structure, not species” (Sukumaran and Knowles 
2017).

Further discussion on which of the various species con-
cepts is “correct” remains outside the scope of this man-
uscript. Rather we seek to ask if, and how, genomic data 
have influenced the operational nature of the various species 
concepts. Specifically, has the increasing resolving power 
of genomic tools (i) been used to invoke the chosen spe-
cies concept (we focus on the PSC and BSC) more read-
ily, or, (ii) led to a more conservative approach to species 
delineation due to the complex interaction of admixture, 
incomplete lineage sorting, and demographic history that 
is increasingly being detected. We also revisit the question 
of the link between species concepts and adaptive potential, 
and whether new genomic data has had an influence on this 
question. We focus on case studies from the recent literature 
(Table 1), which highlight how species delineations have 
been applied to date. These studies either use what could 
broadly be described as the BSC or the PSC (here synony-
mous with “lumping” and “splitting”, respectively) in order 
to justify their species delineations.

Newly proposed species

Giraffe

Recently, Fennessey et al. (2016), produced a draft genome 
for the giraffe (Giraffa camelopardelis), and analysed 
nuclear and mitochondrial sequences from 105 individu-
als from all currently recognized subspecies. In identifying 
four distinct genetic clusters they concluded that “popula-
tion genetic, phylogenetic, and network analyses of nuclear 
sequences demonstrate that the giraffe is genetically well 
structured into four distinct species”. However, this conclu-
sion was based on only two mitochondrial and seven intron 
loci. It contrasts with a previous genetic study of giraffe, 
which used 14 microsatellite loci from 381 individuals to 
identify six distinct clusters (Brown et al. 2007), without 
designating these clusters to species. Therefore, both stud-
ies were based on a relatively small number of loci that 
showed varying genetic structure but reached different con-
clusions. This could be explained by variation among loci 
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with different realisations of stochastic lineage sorting, an 
effect that while still possible for large numbers of loci, is 
more likely to be observed in studies using relatively few 
(Orozco-terWengel et al. 2011). The operational approach 
used in Fennessey et al. (2016) could be described as con-
forming to the PSC, as the genetic structure was used to jus-
tify a “unique combination of character states” (i.e. nuclear 
alleles), present in each of the populations (or species).

Of all the examples presented below, the findings pre-
sented in Fennessey et al. (2016) have probably received 
the most attention to date, reviving the debate on giraffe 
taxonomy and conservation. Bercovitch et al. (2017) listed 
seven points of concern about the original authors’ interpre-
tation of their results. Their concerns included a criticism of 
the lack of concordance between mitochondrial and nuclear 
phylogenies, few loci, and a disagreement that assignment to 
separate genetic clusters was a sufficient indicator of species 
designation. They concluded that the study of Fennessey 
et al. (2016) should only be regarded as one perspective on 
giraffe taxonomy. On the lack of power of the nuclear data-
set used, Fennessey et al. (2017) argued that “Compared to 
microsatellite data, DNA sequences allow estimating diver-
gence times”. Fennessey et al. (2016), however, did not 

estimate population divergence times, only sequence diver-
gence times, which, incidentally, can also be estimated with 
microsatellites (e.g. Hey 2010). The response by Bercovitch 
et al. (2017) also highlighted different criteria for species 
delimitation than Fennessey et al. (2016, 2017). Whilst 
Fennessey et al. (2016, 2017) advocate diagnosability using 
(neutral) genetic markers as the primary criteria for spe-
cies delineations, Bercovitch et al. (2017) placed a greater 
emphasis on phenotypic and behavioural characteristics. 
They stated that: “Coat color patterns are linked to specific 
gene complexes with mutations leading to variation subject 
to natural selection… Phenotypic traits regulate mating pat-
terns and sexual selection that establish a foundation for the 
recognition species concept”.

Ultimately, Fennessey et al. (2016) used limited genetic 
data to detect genetic structure and sequence divergence cri-
teria, which were then equated with species divergence by 
applying the PSC. However, the process of lineage sorting 
under plausible demographic and selection models was not 
considered, nor their influence in the context of the limited 
number of markers used. A follow-up study using a larger 
set of nuclear markers has since been carried out, which 
confirms that gene-flow between the four proposed species 

Table 1   Summary of the genomic evidence used in our case studies

Study Reference Genomic resources Analyses Species criteria used

Newly proposed species
 Giraffe Fennessy et al. (2016) One draft genome • Phylogeny

• Genetic structure
(Using 7 intron loci and 

mitochondrial DNA)

Unique genetic character states 
(PSC)

 Orang-utan Nater et al. (2017) 37 resequenced genomes • Phylogeny
• Genetic structure
• Demographic history
• Morphology
(Genetic data from two, and 

morphological data from 
one Pongo tapanulienis 
individual[s])

Unique genetic and morpho-
logical character states (PSC)

 Finless porpoise Zhou et al. (2018) 48 resequenced genomes • Phylogeny
• Genetic structure
• Demographic history
• Signatures of selection

Reproductive isolation (BSC)

 Darwin’s finch spp. Lamichhaney et al. (2017) 47 resequenced genomes, 
genomic data from 180 
individuals from previous 
study

• Phylogeny
• Morphology
• Pedigree assessments
• Demographic history
• Phenotype-genotype asso-

ciations

Reproductive isolation (BSC)

Currently recognised species
 Stickleback spp. Ravinet et al. (2018) 27 resequenced genomes • Phylogeny

• Demographic history
• Detection of introgression
• Genetic structure
• Signatures of selection

Species claim not made in this 
study, but well-recognised 
as different species with 
reproductive isolation, and 
ecological and phenotypic 
differences (BSC)
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is very low (Winter et al. 2018). However, it appears that in 
this situation the argument is predominantly of an ontologi-
cal nature, and so may not have run its course yet.

Orang‑utan

Nater et al. (2017) recently described the genomic diversity 
of a population of orangutans from the species’ southern-
most range limit in Sumatra (Batang Toru). They concluded 
that the Batang Toru population was sufficiently distinct to 
warrant being named a new species. This conclusion was 
based on morphometric, behavioural and genomic evidence 
from 33 to 37 individuals (the morphological analysis could 
only use a single Batang Toru specimen). Using Approxi-
mate Bayesian Computation modelling of demography, it 
was estimated that the northern Sumatra population split 
from the older Batang Toru ~ 3.4 million years ago (mya), 
but maintained gene flow until 10–20 thousand year ago 
(kya). The authors also point out that there are many 
instances of ongoing gene flow between taxa that are recog-
nised as distinct, well-established species. In light of this, 
Nater et al. (2017) use the species definition that describes 
species as “a population (or group of populations) with fixed 
heritable differences from other such populations (or groups 
of populations)”, effectively invoking the PSC.

The morphological evidence which led to the conclusion 
of a new orang-utan species was based on a single speci-
men from the population in question (and genomic evidence 
based on two). Any criticisms of the validity/robustness of 
this conclusion could be centred around the question of 
whether a single specimen can be considered representative 
of the whole population. Nater et al. (2017) point out that 
numerous species have been identified based on a single type 
specimen in the past. Based on genomics, the authors were 
able to show that these two orangutan populations had fixed 
heritable differences with an estimated termination of gene-
flow from/to the proposed new species 10–20 kya. Yet, Nater 
et al. (2017) did not assess if these SNPs were associated 
with adaptive differences between the populations. Thus, 
although Nater et al. (2017) used genomics to enhance their 
power to apply the PSC with greater resolution, they did not 
use it to attempt to understand the speciation process in any 
mechanistic sense. The conclusions reached by Nater et al. 
(2017) has not been accepted by all in the scientific com-
munity, particularly by proponents of the BSC (e.g. https​://
whyev​oluti​onist​rue.wordp​ress.com/2017/11/03/a-new-speci​
es-of-orang​utan-i-doubt​-it/). Nater et al. (2017) pointed out 
that determining if these populations are reproductively 
isolated or not is not possible, due to their allopatric distri-
bution. One potential solution that was not used by Nater 
et al. (2017) is the Tobias criteria (Tobias et al. 2010). This 
uses sympatric species pairs to set thresholds for delineating 
allopatric taxa. It seems likely that despite the large number 

of features investigated, and analytical methods applied, this 
approach will still fall short of the expectations of many 
proponents of the BSC.

In short, the orang-utan paper represents a case in which 
a large panel of the genomic tools available have been 
applied to address the question of population divergence. 
While presumably adding detailed information about the 
historical processes, it does not attempt to analyse adaptive 
differences, nor to answer whether maintaining these two 
populations of orang-utan as separate would maximize the 
adaptive potential going forward.

Finless porpoise

Zhou et al. (2018) investigated speciation in finless por-
poises, which have traditionally been classified as a single 
species, Neophocaena phocaenoides. Finless porpoises exist 
as three geographic populations or subspecies, two marine 
(Indo-Pacific) and one freshwater population (Yangtze 
River). Zhou et al. (2018) identified several candidate genes 
related to hypoxia that show strong evidence of directional 
selection. They also estimated divergence of the Yangtze 
River population at 5000–40,000 years ago. These findings 
led them to conclude that “significant population differentia-
tion, lack of gene flow, and unique adaptive divergence in 
the Yangtze finless porpoise make it clear that the Yangtze 
finless porpoise is genetically and reproductively isolated 
from its marine counterpart and thus represents an incipient 
species”.

The main aspect that differentiates the porpoise case 
study from that of the orangutan is the term “unique adaptive 
divergence”. By identifying selection signatures in several 
candidate genes that are the result of diversifying selection 
to two different ecosystems, Zhou et al. (2018) found plau-
sible mechanistic evidence for an instance of incipient spe-
ciation. Whilst the orang-utan study by Nater et al. (2017) 
showed phenotypic differences between the two proposed 
species, no evidence was presented to demonstrate that this 
divergence was adaptive, and therefore driving speciation. 
This highlights the issue that, although genomic methods 
for identifying selection in natural populations has advanced 
considerably over recent years, it is still challenging to do 
this with limited numbers of samples.

Darwin’s finches

Lamichhaney et al. (2017) documented a remarkable example 
of hybrid speciation from its origin to reproductive isolation in 
a hybrid between two Darwin’s finch species (Geospiza fortis 
and G. conirostris). This hybrid lineage was shown to breed 
endogamously from the second generation onwards, with 
transgressive segregation of bill morphology, a trait that is 
known to be under strong selective pressure in these species. 
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This study demonstrates that reproductive isolation can occur 
rapidly, in as little as three generations. This species classifica-
tion was therefore based on reproductive isolation of the new 
hybrid finch lineage from its parent lineages, aka the BSC.

Prima facie, the question of a new species of Darwin’s finch 
seems very simple: These species exist in sympatry, and were 
observed to stop interbreeding, a situation clearly fulfilling the 
criteria of distinct species under the BSC. However, Hill and 
Zink (2018) firstly notes that three to four generations may 
not be enough time to determine if the new lineage is ephem-
eral or not, and secondly that phenotypic differences observed 
may be highly plastic. The conclusions of Lamichhaney et al. 
(2017) are strengthened by the fact that they also investigated 
the genetic basis for bill dimension, a morphological trait that 
is implicated in driving ecological success and reproductive 
isolation of the big bird lineage. By observing correlations 
between the ALX1 and HMGA2 loci with morphometrics, 
they were able to use genomics to provide evidence for genetic 
adaptation to a new environment. It seems unlikely that the 
level of observational evidence that they used will be practical 
for most wild species, a common criticism of the practical-
ity of the BSC (Amato and Russello 2014). However, there 
are genomic approaches that can bypass these challenges for 
many taxa. For example, relatives, pedigrees, and local ances-
try tracts can be identified so that reproductive isolation over 
the last few generations can be inferred from genetic data (e.g. 
as carried out in humans, Ko and Nielsen 2017). This could 
serve as an alternative to observational studies.

This is not to say that there are not conceptual criticisms 
that can be made of the BSC regardless of how it is opera-
tionalized [e.g. related to instances of viable hybrids between 
organisms well-recognised to be different species (Nater et al. 
2017)]. As discussed earlier, a full discussion of this is beyond 
the scope of this manuscript, however, genomic tools are at 
least allowing us to be able to better quantify and understand 
the relevance of these instances (even when we only have low 
coverage data or few individuals, Abbott et al. 2016).

Genomic and other data increasingly show that these 
hybridization and introgression events can no longer be 
classed as a rare or insignificant: they are now being recog-
nised as both common and important evolutionary mecha-
nisms, including sometimes being implicated in the adaptive 
advantages to a newly colonised environment (e.g. inverte-
brates, Pogson 2016; plants; Ru et al. 2016; and vertebrates; 
Barbato et al. 2017).

The role of hybridisation in species 
designation

Hybridization is ubiquitous in nature. Sixteen percent of bird 
species (Ottenburghs et al. 2015), 6% of European mammals 
and at least 25% of vascular plants (Mallet 2005) are thought 

to hybridise. Ravinet et al. (2018) investigated signatures of 
divergence and introgression in a species pair: The Pacific 
Ocean three-spined stickleback (Gasterosteus aculeatus) and 
the Japan Sea stickleback (G. nipponicus). These are well-
recognised as different species that have sympatric distribu-
tions and crosses showing male hybrid sterility (Kitano et al. 
2007). However, despite the high differentiation, relatively 
large divergence time (0.68–1 mya) and hybrid sterility, 
ongoing gene-flow and localised introgression could none-
theless be detected (maintained in small regions within the 
genome). Although the authors are not making a new species 
claim, this observation of introgression despite the consid-
erable divergence time is highly relevant to the speciation 
question.

This situation provides challenges for both the PSC and 
the BSC. How infrequent do hybridization events have to 
occur before we consider two biological entities to be dif-
ferent species? Does it make a difference if such hybridiza-
tion is sex-biased? How does regional variation in hybridi-
zation rates influence this inference? The BSC currently 
has no answer to these questions. Likewise, for the PSC, 
“fixed heritable differences” will be immediately mixed in 
hybrid individuals. Therefore, temporal or spatial variation 
in hybridization could lead to transient or spatially varying 
species classifications.

Due to the increasing recognition of the pervasiveness 
of hybridization and introgression among recognised spe-
cies, they are becoming important phenomena to consider 
when making taxonomic decisions. The idea that hybridi-
zation may play an important role in evolution was initially 
explored by botanists and appears to be particularly impor-
tant for plants, with approximately 10% of plant species 
thought to hybridize (Yakimowski and Rieseberg 2014). 
Hybridization is also particularly common in invasive spe-
cies (Ellstrand and Schierenbeck 2000), likely due to hybrid-
ization allowing adaptive introgression of beneficial traits 
between the taxa (Martin et al. 2005, 2006). However, wide-
spread hybridization is not limited to plants and has played 
an important role in the adaptive radiation of e.g. Heliconius 
butterflies (Dasmahapatra et al. 2012). These butterflies are 
of particular interest in speciation research because of their 
huge diversity, with varying rates of hybridization (Van 
Belleghem et al. 2017). Their genomes contain what has 
become known as “genomic islands of divergence” (Nadeau 
et al. 2012). Originally identified in Anopheles mosquitos 
(Turner et al. 2005), the origin and role of these islands was 
originally interpreted as regions of selection and reduced 
introgression between divergent populations, although it is 
increasingly being realised that there are processes other 
than population divergence that may lead to these patterns 
(Cruickshank and Hahn 2014; Wolf and Ellegren 2016).

Hybridization complicates taxonomy when we consider 
that speciation rates, and levels of subsequent hybridization 
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vary considerably between taxa. The proposed new species 
of Darwin’s finch described above showed transgressive 
segregation in bill morphology and was ecologically suc-
cessful. This ongoing finch radiation is predominantly based 
on a behavioural trait (i.e. mate choice). Finches imprint on 
features of their parents early in life, and choose mates based 
on bill size and shape, and body size and song. The driving 
force behind the speciation events here is therefore a com-
plex mating behaviour. While these adaptive traits (at least 
in the case of bill dimensions) are correlated with detectable 
genetic variation, it is their effect on the behaviour pheno-
type that is relevant for reproductive isolation and species 
designation in these taxa. It seems fair to assume that if the 
observational data were available, this situation would be 
representative for most taxa with complex mating behaviour. 
However, this is in stark contrast to many other taxonomic 
groups, which can take far longer to develop reproductive 
isolation. For example, hybridization in marine invertebrates 
may be extreme. One study found hybridization between 
two cryptic species of sea squirt (Ciona intestinalis) with an 
average synonymous sequence divergence of 14.4% (Roux 
et al. 2013). Rates of introgression in Ciona were relatively 
low, variable among loci, and unidirectional, consistent with 
a situation of multiple genetic incompatibilities throughout 
the genome, suggesting that genetic incompatibility was 
developing, albeit very slowly. It would be interesting to 
use genomics to investigate signatures of selection in these 
Ciona populations, to see the extent to which adaptation can 
be detected, and how it reflects the taxonomy.

Previously, we might have written off these examples of 
extreme hybridization as being exceptional, however this 
explanation is becoming more difficult to abide. As we 
can see from the stickleback example above (Ravinet et al. 
2018), the phenomenon is not limited to invertebrates. In 
fact, whole genome data are detecting instances of intro-
gression in many species and in unprecedented detail. For 
example, most non-African humans have 1–2% Neander-
thal ancestry (Green et al. 2010; Prüfer et al. 2014), and 
a number of human populations have Denisovan ancestry 
that is thought to have adaptive significance for adaptation 
to extreme altitude (Reich et al. 2010; Meyer et al. 2012; 
Prüfer et al. 2014). Such patterns of introgression are mir-
rored in non-human primates, with evidence of multiple 
occurrences between bonobos and chimpanzees during the 
past 550,000 years (De Manuel et al. 2016).

These observations complicate the matter of species 
delineation, because they suggest that complete reproductive 
isolation can be withheld for extremely long periods of time 
in some taxa (in the case of Ciona, for greater than three 
million years of divergence in isolation). It could be argued 
that this is just the BSC impartially reflecting the variable 
speciation rates that occur in nature, however some taxono-
mists (e.g. with well-known mammalian groups) clearly 

find such observations problematic as these instances do not 
tend to be reflected taxonomically (e.g. between brown and 
polar bears, coyotes and wolves). Some concepts may regard 
hybridisation as a “consequence”, while others think of it as 
a defining characteristic. However, hybridisation does not 
only complicate species designation for the latter. Hybrids 
may not initially seem relevant to the PSC, but hybrid zones 
between two different taxa diagnosed using the PSC would 
create a gradient of alleles, such that the sampling scheme 
(across the geographic space as well as the genome) and 
population comparison chosen would dictate whether taxa 
would be diagnosed as different. This present a challenge, 
not only for diagnosing different units, but also for describ-
ing what those things are from an ontological point of view.

Are the species concepts operational 
in the genomic era?

There are therefore challenges in operationalizing species 
concepts, but is this more the case for some rather than oth-
ers? And how has genomic data facilitated operationalisation 
for each concept? The PSC is easier to test in most cases, and 
Groves (2013) argued that “the PSC offers the only criterion 
for species recognition that is testable, as a scientific propo-
sition should be.” However, it might be questioned in what 
sense the PSC is testable. And if so, is it the only species 
delineation approach that is?

As argued by Groves (2013), the PSC is “testable”, how-
ever when we do this we must be cautious that we are not 
engaging in an oversimplification. The application of a test-
able threshold does not represent progress if that thresh-
old does not reflect the label that we are trying to establish. 
Genetic differentiation among populations can be greatly 
influenced by demography, including changes in population 
size. Genetic structure has been observed to considerably 
decrease among brown bear populations (Ursus arctos) in 
just 1.5 generations (Hagen et al. 2015), and genetic struc-
ture substantially increased over only 11 years (approx. five 
generations) in Coachella Valley fringe-toed lizards (Uma 
inornata; Vandergast et al. 2016). These examples are not 
intended to demonstrate that speciation does not occur over 
short time periods, but simply that genetic divergence and 
population structure may be highly transient, which many 
people would argue should not be the case for speciation. 
Genomics allows for a huge increase in the power to detect 
population structure because of the much larger number of 
loci available. This has the effect of enabling the identifica-
tion of very fine-scale population genetic structure, and con-
sequently more ‘fixed heritable differences’ between popu-
lations. ‘Splitters’ would presumably interpret this added 
genomic information as an increase in power of detecting 
incipient speciation, whereas ‘lumpers’ would presumably 
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interpret these as ‘type 1 error’ species. In this regard then 
whether genomics has revolutionised our ability to identify 
new species depends on the species concept being applied. 
Genomics has also allowed for a huge increase in the power 
to describe demographic histories (e.g. Nater et al. 2017), 
and this information is important to present alongside that of 
genetic structure when making a species claim, so that that 
claim can be assessed in its full context.

All but one of the examples discussed here have used 
genetic structure as a part of their evidence, however it is 
notable that the porpoise (Zhou et al. 2018), orangutan 
(Nater et al. 2017) and stickleback (Ravinet et al. 2018) stud-
ies also include demographic analysis, whereas the giraffe 
study (Fennessy et al. 2016) did not. Genetic structure does 
not distinguish between isolation and migration and so is 
very difficult to interpret on its own. In addition, the first 
three studies above used a methodology and dataset that 
enabled them to estimate genetic structure that was repre-
sentative of the whole genome. As we can see from the stick-
leback example (Ravinet et al. 2018), and the discussion on 
introgression above, using genetic structure based on a small 
number of loci can be misleading: even species with high 
genomic divergence may have introgressed regions that will 
give a very different perspective of the taxonomy—and even 
without gene flow incomplete lineage sorting can generate a 
high proportion of “wrong” gene trees (Jarvis et al. 2014).

An understanding of population structure can be impor-
tant for conservation, but it is important to understand its 
limitations. Frankham et al. (2012) argued that species delin-
eations need to be relevant to the point at which populations 
have/have not become reproductively isolated (which is not 
necessarily related to genetic structure), in order for them to 
minimise the risk of inbreeding and outbreeding depression 
and maximise the benefits of gene-flow. These arguments 
led the authors to recommend that only substantial repro-
ductive isolation be used to define species (for outbreed-
ing sexual organisms) in conservation. Amato and Russello 
(2014) commented on this paper, with their main critique 
being the difficulty of operationalising the BSC. Frankham 
(2014) countered that reproductive isolation generally arises 
from adaptation to different environments and/or outbreed-
ing depression caused by fixed chromosomal differences, 
both of which can be detected (albeit requiring a more tech-
nically challenging approach than a structure analysis). They 
stated that “Divergence should be protected when it reflects 
adaptive differences, but countered when it threatens popula-
tions.” The authors were therefore arguing that the BSC is 
be a better proxy for adaptive potential than the PSC. It is 
important to note that this argument is predominantly based 
on the BSC being a better tool for recognising conserva-
tion units, and therefore is not addressing its ontological 
relevance. Nonetheless, adaptive potential is important if 
we want to conserve populations that are able to adapt to 

changes in their environment. However, is it true that the 
BSC preserves adaptive potential better, and if so, are there 
limits and/or exceptions to this?

Which species concept best conserves 
adaptive potential?

Adaptation to novel ecological opportunities is one of the 
main drivers of speciation (Van Belleghem et al. 2017), and 
predicting the capacity of taxonomic groupings to respond to 
changing environments is therefore crucial to their conserva-
tion (Eizaguirre and Baltazar-Soares 2014). The Darwin’s 
finch example above is a clear demonstration of the potential 
of hybridization to produce a population with unique adap-
tive potential. However, this hybridization and introgression 
may have a confounding influence on species delineations 
(particularly for the BSC), which is exacerbated when we 
also consider the adaptive advantage that introgressed genes 
may bring. This process, adaptive introgression, poses a 
challenge to the claim that the BSC is a good proxy for adap-
tive potential. Even very low levels of introgression can have 
a large effect on the adaptive potential of the recipient popu-
lation; adaptive genetic variation has the potential to move 
to high frequencies very quickly in a population (Maynard 
Smith and Haigh 2008). In addition, the adaptive potential 
of the introgressed material may vary between the donor and 
recipient populations, depending on factors such as popula-
tion size and selection regime. Therefore, in some situations, 
taxa designated by the BSC (even when allowing for very 
low levels of introgression) may be reflective of adaptive 
differences between them (e.g. the adaptive differences in 
the Darwin’s finch example). However, in many situations 
it will not. For example, it seems highly likely that the two 
distinct populations of sea squirts (Ciona) (Roux et al. 2013) 
have accumulated considerable adaptive differentiation in 
their three million years of divergence in isolation, regard-
less of the fact that gene-flow has now been re-established. 
This gene-flow would preclude these as separate species 
under the BSC, and therefore (unlike with the finches) the 
taxonomy would not reflect the adaptive differences between 
populations/species. Hence, the BSC will better represent 
adaptive differentiation in some comparisons than in oth-
ers, and this may be biased towards taxonomic groups with 
particular life-history traits. It should also be noted that this 
is no less the case for the PSC. If our goal is to conserve 
adaptive potential in an unbiased way across all taxa then 
this is a crucial point to consider. Many scientists argue that 
maximizing phylogenetic diversity will indirectly capture 
functional diversity (Vane-Wright et al. 1991; Faith 1992; 
Winter et al. 2013). However, a recent study by Mazel et al. 
2018 has shown that phylogenetic diversity does not reliably 
capture functional diversity.
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This raises the question of why not simply measure adap-
tive potential directly? Genomics is starting to allow us to do 
this. For example, Zhou et al. (2018) identified evidence of 
selective sweeps in a number of genomic regions across the 
porpoise genome using a method that looks for distinctive 
patterns of allele frequencies along a chromosome (Nielsen 
et al. 2005). Other commonly used methods for detecting 
selection include: (1) Identification of extended haplotypes 
that are at, or near fixation in a subset of individuals (Sabeti 
et al. 2007), (2) Outlier methods that compare a model based 
on including versus excluding selection (Foll and Gaggiotti 
2008), (3) Attempts to identify correlations between SNPs 
and environmental variables (Coop et al. 2010). In the por-
poise example, Zhou et al. (2018) found regions that have 
a plausible link to morphological characteristics that differ-
entiate the two proposed incipient species. Applying these 
methods has the benefit of not requiring the assumption that 
adaptive differences are related to reproductive isolation or 
genetic structure, which, as described above, may be inac-
curate. It should be noted however that tracking adaptive 
changes using genomics is challenging for many traits, espe-
cially those that have low heritability or are highly polygenic 
(Hoffmann et al. 2017). However, it is often hard to convinc-
ingly demonstrate selection on a given region of the genome 
as in many cases it is only the regions undergoing strong 
haplotypic selection that will be detected in the analyses 
discussed above. Furthermore, demonstrating past selec-
tion may not necessarily be associated with contemporary 
or future adaptive potential of a genome/genomic region, 
given that selection pressures are dynamic. Finally, even if 
a genomic region can be identified as being under selec-
tion, determining the specific “cause” of this pressure can 
be highly challenging, particularly for non-model organisms.

We have argued that some species concepts may be more 
applicable (in terms of relating to adaptive potential) to some 
taxa than others. For example, reproductive isolation may 
be a useful criterion in the case of Darwin’s finches, since 
it aligns with the behavioural, morphological and ecologi-
cal differences between populations. For organisms like sea 
squirts, genetic distance and differentiation may be a better 
reflection of the differences that have accumulated over long 
periods of temporal and spatial isolation. The relationship 
between adaptive potential and species concept therefore 
seems to depend on the taxa being investigated. This does 
not necessarily mean that these are not good criteria, inde-
pendently, for defining species. However, it certainly com-
plicates conservation strategies that aim to maximise evo-
lutionary potential, especially when only one is considered 
at a time. We would therefore caution against focusing on a 
single species concept, especially when the taxa in question 
are of conservation concern. In this situation it is important 
to be very clear about which concepts are being invoked, and 
how the evidence presented supports them. It is important to 

incorporate multiple lines of evidence into taxonomic deci-
sions (which is increasingly being done; Schlick-Steiner 
et al. 2010) however, this evidence can now theoretically be 
provided by entirely by genomics: (1) morphological evi-
dence can be identified via differentiation in developmen-
tal and structural genes, (2) biogeographic evidence can 
be provided using sophisticated genome-scale modelling, 
(3) behavioural differences can be inferred by identifying 
genes associated with behaviour, mate-choice, and also by 
detecting sex-biased demography, (4) ecological evidence 
is available in the form of genomic signatures of selection 
to environmental factors, (5) reproductive compatibility can 
be observed as sex chromosome compatibility/incompatibil-
ity, chromosomal structure, and epigenomic transmission. 
In lieu of a definitive conclusion as to the most appropriate 
species concept to be used, best practice would be to investi-
gate as many of the above lines of evidence as possible, and 
to apportion ones confidence in a species designation based 
on the combined weight of all of them. Recently, Kitchener 
et al. (2017) introduced the concept of a ‘traffic light’ sys-
tem for evaluating the strength of evidence of the above five 
categories of species differentiation, which may provide a 
pragmatic approach to evaluating genomic data in specific 
definition if applied sensibly.

One thing that both ‘splitters’ and ‘lumpers’ seem to 
agree on is that it is preferable that conservation decisions 
are based on sound scientific evidence. Any ‘planning 
blight’ due to taxonomic uncertainty can be detrimental to 
conservation, and renders decisive action more difficult. 
However, while we still have some way to go before genomic 
techniques reach their full potential as a diagnostic tool for 
species delineation, if the ultimate goal of conservation is 
to preserve adaptive potential, genomics is now allowing 
us to gain a better understanding of this in wild popula-
tions. A pragmatic approach could be to use genomic tools 
to characterise adaptive potential regardless of the species 
concept, or even without invoking a species concept at all. 
However, answering the question of whether and to what 
extent such studies should focus on adaptive potential is a 
separate challenge.
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The role of rare variants in complex traits remains uncharted. Here, we conduct deep whole

genome sequencing of 1457 individuals from an isolated population, and test for rare variant

burdens across six cardiometabolic traits. We identify a role for rare regulatory variation,

which has hitherto been missed. We find evidence of rare variant burdens that are inde-

pendent of established common variant signals (ADIPOQ and adiponectin, P= 4.2 × 10−8;

APOC3 and triglyceride levels, P= 1.5 × 10−26), and identify replicating evidence for a burden

associated with triglyceride levels in FAM189B (P= 2.2 × 10−8), indicating a role for this gene

in lipid metabolism.
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Genome-wide association studies have gleaned substantial
insights into the genetic architecture of complex traits.
The contribution of common-frequency variants to

complex traits has been well-documented, and progress in
understanding the role of low frequency variation has also gained
considerable traction. However, the role of rare variants in the
genetic architecture of medically-relevant complex traits remains
less well-understood, and the allelic architecture of complex trait
association signals has not yet been fully resolved. Rare variant
association studies have so far mainly focussed on exonic
regions1, and in whole-genome sequencing studies the optimal
analytical approach for rare regulatory variants remains an open
question2. Population-scale deep whole genome sequencing can
capture genetic variation across the entire allele frequency spec-
trum traversing the coding and non-coding genome. In addition,
population isolates offer increased power gains in detecting
associations involving rare and low-frequency variants3.

Here, to improve our understanding of the role of rare variants,
we perform cohort-wide deep whole genome sequencing of 1457
individuals from a deeply-phenotyped, isolated population
from Crete, Greece (the HELIC-MANOLIS cohort4–6) at an
average depth of 22.5× (Supplementary Fig. 1), capturing 98% of
true single nucleotide variants (SNVs) (Methods and Supple-
mentary Fig. 2). The population genetics characteristics of
HELIC-MANOLIS have been studied, and indicate an effective
population size of Ne= 6242 and an approximate time of diver-
gence of 1100 years from the general Greek population4,7. We
address open questions on whole genome sequencing study
design, analysis and interpretation, and identify burdens of cod-
ing and regulatory rare variants associated with cardiometabolic
traits.

Results
Effect of sequencing depth. Comparing whole genome sequen-
cing at various depths ranging from 15× to 30× (Methods), we
find that 96.4% of singletons, 97.9% of doubletons and 97.6% of
variants called using 30× sequencing are recapitulated at 22.5x

depth. Genotype accuracy (as measured by r2) is 99.7% for 22.5×
depth and 98.5% for 15× depth, suggesting that increases between
15× and 30× translate into marginal improvements in both call
rate and quality of very rare SNVs (Fig. 1, Supplementary Fig. 3
and Methods). We find that false discovery rates and genotype
accuracy are substantially more dependent on sequencing depth
for INDELs than for SNVs (Fig. 1).

Landscape of sequence variation. Following quality control
(QC), we call 24,163,896 non-monomorphic SNVs and INDELs,
97.9% of which are biallelic. 14,281,180 (60.31%) of the biallelic
SNVs are rare (minor allele frequency [MAF] < 0.01); 3,103,273
(13.1%) are low-frequency (MAF 0.01–0.05); and 6,292,726
(26.57%) are common (MAF > 0.05). We call 8,294 non-
monomorphic variants annotated as loss-of-function (LoF) with
low-confidence (LC)8, and 438 variants annotated as LoF with
high-confidence (HC) (Supplementary Fig. 4). On average, each
individual carries 405 (standard deviation σ= 19) LC LoF variants
and 31 (σ= 6) HC LoF variants, compared to 149 LoF variants per
sample in a whole genome sequencing study of 2636 Icelanders9.
0.6 and 1% of HC and LC LoF carrier genotypes are homozygous,
respectively. INDELs are significantly more frequent among LoF
variants, with 53.2 and 76% in the low-confidence and high-
confidence sets, respectively, compared to 13.5% genome-wide.
We observe an enrichment of rare variants among the coding and
splice variant categories in MANOLIS (one-sided exact binomial
P= 9.5 × 10−16), and we recapitulate this in an independent
dataset of 3724 individuals with whole genome sequencing from
the UK-based INTERVAL cohort10(Fig. 2). We also observe a
lower rate of singletons compared to the general Greek population
and the INTERVAL cohort (P ≈ 10−167 and P < 10−200, respec-
tively, one-sided empirical P-value) (Methods and Supplementary
Fig. 5), in keeping with the isolated nature of this Cretan popu-
lation. Among the 5,102,175 novel biallelic variants (not present in
gnomAD11 or Ensembl release 8412), 4,394,678 are SNVs, and the
majority are rare (Supplementary Fig. 6).
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Refinement of parameters for rare variant burden testing. We
carried out genome-wide rare variant burden analyses for six
medically-relevant traits: serum adiponectin, bilirubin, gamma-
glutamyltransferase, low- and high-density lipoprotein, and tri-
glyceride levels. As choice of genomic region, variant selection
and weighting remain open questions for rare variant analysis, we
benchmark 10 approaches using different regions of interest
(exonic, exonic and regulatory, and regulatory only), variant
inclusion and weighting methods (Methods; Supplementary
Table 1). Overall, association statistics correlate highly within
three distinct clusters (Supplementary Fig. 7). Among exonic-only
analyses, rare variant tests that only include unweighted high-
consequence variants cluster separately from those in which
variants are weighted according to their functionality scores. The
third cluster encompasses all tests that include regulatory var-
iants. Neither the variant weighting scheme nor the transforma-
tion used for adjusting the weights has a notable influence on the
results.

Rare variant burden discovery. In total, twenty burden signals
exceed the study-wide significance threshold of 2.0 × 10−7 (Sup-
plementary Fig. 8), arising from four independent genes. Pro-
viding proof-of-principle, we identify association of a burden of
loss-of-function variants with blood triglyceride and high-density
lipoprotein levels in the APOC3 gene (Fig. 3.a, Supplementary
Data File 1)5,13. The strongest signal arises when the splice-donor
variant rs138326449 (minor allele count (MAC)= 38, minor
allele frequency (MAF)= 0.013) and the stop-gained variant

rs76353203 (MAC= 62, MAF= 0.022) are included in the ana-
lysis (P= 1.6 × 10−26). We replicate the association of a burden of
rare coding APOC3 variants with triglyceride levels in INTER-
VAL, in which we identify a burden of 25 exonic variants (P=
3.1 × 10−6) (Supplementary Data File 2). This is driven by
rs138326449 and rs187628630, a rare 3’ UTR variant (MAF=
0.008), with a two-variant burden P= 9.0 × 10−7. rs138326449 is
the only loss-of-function variant in APOC3 present in this cohort,
and is four times rarer than in MANOLIS (MAFINTERVAL= 0.003
vs MAFMANOLIS= 0.013).

We detect a new association of triglyceride levels with rare
variants in the FAM189B gene (Fig. 3.b, Supplementary Data
File 1). The burden association (P= 1.5 × 10−7) is driven by
two independent novel splice variants: chr1:155251911 G/A
(human genome build 38, MAC= 3, P= 8.2 × 10−6) and
chr1:155254079 C/G (MAC= 2, P= 6.04 × 10−4). In both cases,
the minor allele is associated with increased triglyceride levels
(effect size β= 2.59 units of standard deviation, σ= 0.57 and β=
2.40 σ= 0.69, respectively). Both variants exhibit high quality
scores (VQSLOD > 19), high sequencing read depth (24× and
26.5×, respectively) and no missingness. A further novel splice
region variant (chr1:155251496 T/C) and a stop gained variant
(rs145265828), both singletons, were also included in the analysis;
however their contribution to the burden is insignificant (burden
P= 2.2 × 10−8 when excluding them). We replicate evidence for a
burden signal at FAM189B in the INTERVAL cohort (P= 9.3 ×
10−3) (Supplementary Data File 2), which includes two stop
gained variants with one driving the association: chr1:155250417
(rs749626426, MAC= 2, β= 1.96 σ= 0.70, P= 5.4 × 10−3). In
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keeping with the discovery dataset, the disruptive minor allele is
associated with increased triglyceride levels. The two novel splice-
region variants discovered in MANOLIS are not present in either
the INTERVAL study or in a compendium of 123,136 exomes
and 15,496 whole genomes assembled as part of the gnomAD
project11. FAM189B has not been previously associated with
blood lipid levels.

We find evidence of a low frequency and rare variant burden
association with bilirubin levels in the UGT1A9 gene (Fig. 3.c,
Supplementary Data File 1). This association arises from the
analyses including exonic and regulatory variants (P= 1.9 × 10−8),
and from the analyses including regulatory variants only (P=
7.2 × 10−8). We find evidence for association in the exon plus
regulatory region burden analysis in the INTERVAL replication
cohort (P= 1.7 × 10−45, Supplementary Data File 2). A common
variant in the first intron of UGT1A9 (rs887829, MAF= 0.28, β=
0.426 σ= 0.04, two-sided score test P= 4.0 × 10−21 in the
MANOLIS cohort) has previously been associated with bilirubin
levels14,15. As expected, genotype correlation between rs887829
and each of the low-frequency and rare variants included in the
burden is low (rmax

2= 0.1). The rs887829 signal is not attenuated
when conditioning on carrier status for the two main drivers of the
burden (single-point score test Pconditional= 4.5 × 10−21), or when
conditioning on the number of rare alleles carried per individual

(Pconditional= 4.0 × 10−21). The evidence for association with the
rare variant burden in UGT1A9 is substantially reduced when
conditioned on rs887829 (burden Pconditional= 0.0146). Conversely,
the two-variant signal for the two main burden drivers is
attenuated from P= 1.4 × 10−7 to Pconditional= 7.0 × 10−3 when
conditioning on rs887829, indicating that it likely recapitulates part
of a signal driven by a known common-variant association in the
region.

We identify an association of adiponectin levels with low-
frequency and rare variants in the ADIPOQ gene (Fig. 3.d,
Supplementary Data File 1). The evidence for association is
stronger for exonic and regulatory variants combined (P= 4.2 ×
10−8) than in either the regulatory-only (P= 0.19) or exon-only
(P= 2.0 × 10−6) analyses, suggesting a genuine contribution of
both classes of variants to the burden. The missense variant
rs62625753 (MAF= 0.031, two-sided score test P= 4.0 × 10−5)
contributes to the burden signal and is predicted to be damaging.
The strength of association for the burden is reduced, but not
entirely attenuated, when conditioned on rs62625753 (Pconditional
= 8.9 × 10−4), indicating that it is not singly driven by this
variant. rs35469083 (MAF= 0.044) also contributes to the
burden, and is an expression quantitative trait locus (eQTL) for
ADIPOQ in visceral adipose tissue (minor allele associated with
decreased gene expression). rs62625753 and rs35469083 have
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consistent directions of effect, with the minor alleles associated
with reduced adiponectin levels, in keeping with their functional
consequences on the gene (two-variant burden P= 4.8 × 10−7).
No common-variant signal for adiponectin levels is present in
this region in our dataset. The burden signal remains significant
upon conditioning on the genotypes of all variants with previous
associations for adiponectin, type 2 diabetes or obesity that are
polymorphic in MANOLIS (Supplementary Table 2).

In addition to the four genes that meet study-wide significance,
we find gamma-glutamyltransferase levels to be suggestively
associated with a burden of low frequency and rare exonic
variants in the gamma-glutamyltransferase 1 (GGT1) gene (P=
2.3 × 10−6) (Fig. 3.e, Supplementary Data File 1). A previously-
reported, common-variant association is also present in an intron
of this gene (rs3859862, MAF= 0.46, two-sided score test P=
1.9 × 10−6). The burden signal in GGT1 is maintained when
conditioning on rs3859862 (Pconditional= 5.1 × 10−5), suggesting
that rare variants be independently contributing to this established
association. Similarly, the single-point association at rs3859862
conditioned on carrier status for all rare variants included in the
burden is not attenuated (Pconditional= 2.8 × 10−5), a result
recapitulated by conditioning the same variant on the number
of rare alleles carried per individual (Pconditional= 1.8 × 10−5),
providing evidence for an independent rare variant signal at this
locus.

Signatures of selection. We surveyed the genomic loci with
evidence of rare variant burden signals for signatures of recent or
ongoing positive selection in the MANOLIS cohort, using inte-
grated haplotype scores (iHS)16. Previous studies have shown that
an elevated fraction of SNVs with |iHS| > 2 in a genomic region is
a signature of recent or ongoing selection and notably, we find
that 32% of the SNVs in FAM189B have an iHS score above 2,
placing it in the top 5% of all genes analysed (96.7th percentile).
This result is robust across several definitions of the genomic
region representing the genes (95.6th-98.3th percentile) and to
conditioning on gene length (94.6th percentile) (Supplementary
Table 3). To further investigate this potential signature of selec-
tion in FAM189B, we examined the extent to which the allele
frequencies in FAM189B differ between the MANOLIS cohort
and the 1000 Genomes CEU population sample using weighted
mean FST. Like with iHS, FAM189B lies in the top 5% of all genes
analysed across several definitions of the genomic regions (Sup-
plementary Table 4).

Discussion
In this work, we have whole genome sequenced 1457 individuals
from the HELIC-MANOLIS cohort at an average depth of 22.5×.
We describe the genomic variation landscape in this special
population, discover 5.1 million novel variants, and perform rare
variant burden testing across the entire genome for medically-
relevant biochemical traits.

We empirically address several open whole genome sequencing
study design and analysis questions. Through a downsampling
approach, we demonstrate that it is possible to achieve near-
perfect sensitivity and quality for rare SNV calling and geno-
typing with half the depth, and at substantially lower cost,
compared to 30× sequencing. This observation does not extend to
INDELs, for which depth increases above 15× can result in a 15%
increase in genotype quality and a 40% increase in true positive
rate.

Defining the genomic regions in which to select variants, fil-
tering strategies and variant weighting schemes constitute unre-
solved challenges in whole genome sequence-based studies. We
find that association signal profiles of tests including regulatory

region variants differ markedly from other scenarios, with some
signals being driven by this variant class. Further, signal strength
differs substantially between analyses that include high-severity
consequence exonic variants only, and those in which all exonic
variants are weighted according to their predicted consequence.
We find that, as a rule, variant and functional unit selection,
rather than weighting scheme, plays the largest role in association
testing.

We identify a role for rare regulatory variants in the allelic
architecture of complex traits. It is therefore important to leverage
the whole genome sequence nature of the study data, and not to
restrict analyses to coding variation only. We observe congruent
directions of effect among regulatory and coding rare variants in
burden signals that combine both classes of variation, for example
across eQTL and damaging missense variants in the ADIPOQ
gene that are together associated with adiponectin levels.

We discover replicating evidence for association of a rare
variant burden with triglyceride levels at a locus not previously
linked with the trait. FAM189B (Family With Sequence Similarity
189 Member B), also known as COTE1 or C1orf2, codes for a
membrane protein that is widely expressed, including in adult
liver tissue17. Expression of FAM189B has been found to be
correlated with endogenous SREBP-1 activation in vitro18. Sterol-
regulatory element binding proteins (SREBPs) control the
expression of genes involved in fatty acid and cholesterol bio-
synthesis, therefore indicating a mechanism by which FAM189B
could be involved in lipid metabolism. We found FAM189B to
contain an elevated fraction of SNVs with |iHS|>2, a potential
signature of recent positive selection. Furthermore, FAM189B is
in the top 5% of all genes in terms of population differentiation
(FST) between the MANOLIS cohort and the 1000 Genomes
Project CEU sample, which is consistent with selection having
happened in MANOLIS. This is particularly interesting in the
context of this population, which has a high animal fat content
diet6, and for which loss of function variants in APOC3 have risen
in frequency compared to the general population and confer a
cardioprotective effect19,20. For the same reason, it is interesting
to note that FAM189B has not previously been reported to be
under selection in other populations21. However, we caution that
although FAM189B is in the top 5% of all genes for both iHS and
FST, it is not an extreme outlier for either, suggesting that it could
be a false positive or that the selection has not acted strongly
enough or for long enough to leave more than subtle signatures in
the haplotype structure and allele frequencies in the gene. It is
also possible that selection has acted on several rare alleles
making the signature more complex than simple directional
selection.

We replicate the FAM189B association in an independent
dataset with deep whole genome sequence data, in which the
disruptive rare alleles are also associated with the same trait in the
same direction. Across the board, we replicate all burden signals
for which replication cohort trait measurements are available. We
find that allelic heterogeneity is prevalent, partly due to the rare
nature of the variants contributing to the burdens, and partly due
to the distinct population genetics characteristics of the discovery
and replication sets. Perhaps as a consequence, the outcome of
variant filtering and weighting was quite sensitive to the study
population, and all the burdens reported here replicated strongest
in slightly different testing conditions from the discovery,
although in the same broad functional class. The association in
FAM189B was discovered when including exonic variants with a
relaxed severity threshold, whereas it replicated in the LoF-only
analysis. Similarly, the APOC3 signal was discovered in the LoF-
only analysis but replicated in the CADD-weighted exonic ana-
lysis. These findings have important consequences for defining
replication in sequence-based studies of rare variants, and
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highlight the importance of defining replication at the locus level
rather than the variant level for burden signals.

We demonstrate pervasive allelic heterogeneity at complex trait
loci, and identify exonic and regulatory rare variant associations
at established signals. We find multiple instances of burden sig-
nals that remain independent of colocalising common variant
signals, and one instance of burden signal attenuation when
conditioning on the established common variant association.
Within the power constraints of the study, we do not find evi-
dence for synthetic association at established signals, i.e., there is
no evidence for multiple rare variants at a locus accounting for a
common variant association.

The discovery of rare variant burden associations with a
modest sample size has been made possible due to the special
population genetics characteristics of the isolated cohort under
study. Rare variant signals, such as the ones discovered in APOC3
and FAM189B in MANOLIS, are driven by variants with severe
consequences that are rarer or absent in cosmopolitan popula-
tions. This demonstrates that the well-rehearsed power gains
conferred by isolated cohorts in genome-wide association studies3

extend to whole genome sequence-based rare variant association
designs.

Our findings indicate that deep whole genome sequencing at
scale will be required to enable exhaustive description of the rare
variant burden landscape in a population. For example, in the
case of the FAM189B signal, low-depth sequencing (1× depth) of
1239 MANOLIS samples22 misses one of the two burden-driving
variants (chr1:155251911, MAC= 3). Similarly, genome-wide
genotyping coupled to dense imputation of the same samples
does not capture the variants driving the burden signal identified
here through deep whole genome sequencing23.

Our findings provide evidence for a role of low-frequency and
rare, regulatory and coding variants in complex traits, and
highlight the complex nature of locus-specific architecture at
established and newly emerging signals. We anticipate that larger-
scale, cohort-wide, deep whole genome sequencing initiatives will
substantially further contribute to our understanding of the
genetic underpinning of complex traits.

Methods
Ethics and informed consent statement. In the TEENAGE study, prior to
recruitment all study participants gave their verbal assent along with their parents’/
guardians’ written consent forms. The study was approved by the Institutional
Review Board of Harokopio University and the Greek Ministry of Education,
Lifelong Learning and Religious Affairs. The MANOLIS study was approved by the
Harokopio University Bioethics Committee and informed consent was obtained
from every participant. The INTERVAL study was approved by the Cambridge
South Research Ethics Committee and informed consent was obtained from every
participant.

Sequencing. For MANOLIS, genomic DNA (500 ng) from 1482 samples was
sheared to a median insert size of 500 bp and subjected to standard Illumina
paired-end DNA library construction. Adapter-ligated libraries were amplified by 6
cycles of PCR and subjected to DNA sequencing using the HiSeqX platform
(Illumina) according to manufacturer’s instructions. For TEENAGE, one hundred
samples from the general Greek population were sequenced, as well as the Genome
in a Bottle NA12878 sample. Sample identity checks were performed using Flui-
digm and aliquots prepared. These aliquots underwent library preparation using
the standard HiSeqX method. Size selection was performed to target 350 base pairs.
Sequencing was performed on the Sanger Institute’s Illumina HiSeqX plat-form
with a target depth of 30x and PhiX spike-in.

Evaluation of sequencing accuracy at various depths. Reads from the NA12878
were downsampled to several read depths (from 5× to 30×) using the -s option of
samtools view, aligned and processed through GATK Variant Quality Score
Recalibrator. They were then compared to Genome in a Bottle (GIAB) 0.2 calls to
extract the true positive rate (Supplementary Fig. 2). At 22.5×, true positive rates
are 98% for SNVs and 76% for INDELs.

Comparison with the general Greek population. We compared variant callsets in
MANOLIS to a dataset of 100 samples from the Greek general population
(TEENAGE study), for which an identical sequencing protocol was used. The
average depth in the TEENAGE study was 32.1×. We downsampled the individual
BAMs to 22.5× and 15× using the -s option of samtools based on the average depth
of the TEENAGE dataset, then performed variant calling using GATK Haploty-
peCaller v3.3 (https://github.com/mp15/af_analysis) and filtering using GATK
Variant Quality Score Recalibrator. The downsampled and original datasets were
then compared using bcftools stats to extract allelic r-squared (Fig. 1.b.). For the
22.5× dataset, we compared variant overlap with bcftools isec (Fig. 1.a. and Sup-
plementary Fig. 3).

Rare variant counts in MANOLIS, TEENAGE and INTERVAL. Since sample sizes
differ between the three datasets, we randomly subsampled the larger dataset to a
matching size for each pairwise comparison. We used these resampled datasets to
build empirical distributions for rare variant counts in the larger dataset, and
compared it to counts in the smaller dataset. TEENAGE (n= 100) was smaller
compared to MANOLIS (n= 1482), so we drew 1000 sets of 100 samples from the
MANOLIS study for the comparison. We counted 270,916 singletons and 61,690
doubletons in TEENAGE, compared with a median of 179,100 (one-sided P=
1.4 × 10−94 from a fitted normal distribution) and 75,280 (one-sided P= 3.0 ×
10−19 from a fitted normal distribution), respectively, in MANOLIS (Supple-
mentary Fig. 5a,b.). For n= 100, singletons correspond to MAF < 0.005 and dou-
bletons to 0.005 <MAF < 0.1.

For the INTERVAL (n= 3742) comparison, MANOLIS was the smaller dataset,
so we resampled 500 sets of 1482 samples from the INTERVAL cohort and
counted variants up to MAC= 29 (MAF= 0.01). The increased resolution
provided by this larger sample size shows that rare variant counts are greater in the
cosmopolitan population below MAC= 4 (MAF= 0.0013), but greater in the
isolate for 0.0013 <MAF < 0.1, consistent with our coarser observation in
TEENAGE (Supplementary Fig. 5.c).

For p-values of singleton counts, empirical quantiles cannot be computed for
such large deviations from the mean. We fitted a normal distribution to singleton
counts, and computed the theoretical quantile corresponding to the observed count
in the smaller cohort.

Variant calling. Basecall files for each lane were transformed into unmapped
BAMs using Illumina2BAM, marking adaptor contamination and decoding bar-
codes for removal into BAM tags. PhiX control reads were mapped using BWA
Backtrack and were used to remove spatial artefacts. Reads were converted to
FASTQ and aligned using BWA MEM 0.7.8 to the 1000 Genomes hs37d5 (for
NA12878) and hg38 (GRCh38) with decoys (HS38DH) (for TEENAGE) refer-
ences. The alignment was then merged into the master sample BAM file using
Illumina2BAM MergeAlign. PCR and optical duplicates are marked using bio-
bambam markduplicates and the files were archived in CRAM format.

Per-lane CRAMs were retrieved and reads pooled on a per-sample basis across
all lanes to produce library CRAMs; these were each divided in 200 chunks for
parallelism. GVCFs were generated using HaplotypeCaller v.3.5 from the Genome
Analysis Toolkit (GATK) for each chunk. All chunks were then merged at sample
level, samples were then further combined in batches of 150 samples using GATK
CombineGVCFs v.3.5. Variant calling was then performed on each batch using
GATK GenotypeGVCFs v.3.5. The resulting variant callsets were then merged
across all batches into a cohort-wide VCF file using bcftools concat.

Quality control. Variant-level QC was performed using the Variant Quality Score
Recalibration tool (VQSR) from the Genome Analysis Toolkit (GATK) v. 3.5-0-
g36282e424, using a tranche threshold of 99.4% for SNPs, which provided an
estimate false positive rate of 6%, and a true positive rate of 95%. For INDELs, we
used the recommended threshold of 1%. For sample-level QC, we made extensive
use of a previously described23 GWAS dataset in 1175 overlapping samples. Four
individuals failed sex checks, 8 samples had low concordance (π̂<0:8) with chip
data, 11 samples were duplicates, and 12 samples displayed traces of contamination
(Freemix score from the verifyBamID suite25>5%). In case of sample duplicates, the
sample with highest quality metrics (depth, freemix and chipmix score) was kept.
As contamination and sex mismatches were correlated, a total of 25 individuals
were excluded (n= 1457). No further samples were excluded based on depth,
heterozygosity, transition/transversion (Ti/Tv) rate, missingness or ethnicity. No
rare or low-frequency variant (MAF < 5%) was excluded based on the Hardy-
Weinberg equilibrium test at P= 1.0 × 10−5. We filtered out 14% of variants with
call rates < 99%.

Genetic relatedness matrix. Several methods are available to estimate the genetic
relatedness present in isolated cohorts such as HELIC-MANOLIS26. We compared
methods proposed in GEMMA27, EMMAX28, KING29 and PLINK30., and found
that the kinship coefficients reported by each method were highly correlated, but
on a different scale from each other (Supplementary Fig. 9). For consistency with
previous studies performed on the same samples, we calculated a genetic related-
ness matrix using GEMMA27 after filtering for MAF < 0.05, missingness <1% and
LD-based pruning. In addition, MONSTER requires self-kinship coefficients on the
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diagonal of the relatedness matrix, which we calculated using the bF1 metric from
PLINK 1.9. The matrix was then converted to the long format using the reshape2 R
package.

Association testing. Burden testing was performed using MONSTER31, a method
that extends the SKAT-O32 model to account for relatedness and/or structure
present in cohorts such as population isolates when testing for association. We ran
burden testing across all genes defined in GENCODE v25 using 10 different
conditions, i.e., combinations of regions of interest (coding regions only, coding
and regulatory regions and regulatory regions only), variant filters (inclusion cri-
teria based on severity of predicted consequence) and weighting schemes (Sup-
plementary Table 1). QQ-plots for all testing conditions and traits are presented in
Supplementary Fig. 10.

First, we extracted exonic coordinates for all protein-coding genes, which
defines the region of interest for strictly exonic variants. These regions of interest
were used in combination with 5 different variant filtering and weighting schemes.
First, we included only variants predicted as high-confidence (HC) loss-of-function
(LoF) by LOFTEE8 that reside in the exons of protein-coding genes
(Supplementary Table 1: LOFTEE HC). As only 460 variants in 85 genes passed
this inclusion criterion, we performed an additional analysis including 8,570 low-
confidence (LC) loss-of-function variants spread across 1,727 genes
(Supplementary Table 1: LOFTEE LC). Stop-gained and frameshift mutations were
the largest contributors to both the LC and HC sets. However, the LC set also
includes a large number of splice donor and splice acceptor variants
(Supplementary Fig. 4). We further performed an analysis with more relaxed
inclusion criteria, including all exonic variants for which the Ensembl most severe
consequence was more damaging than missense as predicted by the Variant Effect
Predictor33 (Supplementary Table 1: Exon severe). We also employed Combined
Annotation Dependent Depletion (CADD)34 scores, either to weigh all exonic
variants (Supplementary Table 1: Exon CADD) or to filter out variants with CADD
scores below the genome-wide median (Supplementary Table 1: Exon CADD
median). Finally, we extended exon boundaries as defined above with 50 base pairs
either side, to account for cases where potentially damaging variants occur on the
edges of exons, as has been shown to happen for previously identified rare variant
burdens5. These regions of interest were used in combination with one variant
weighting scheme only (Exon+ 50 CADD).

We extracted regulatory regions (promoters, enhancers and transcription-factor
binding sites) from Ensembl build 8412. We assigned regulatory regions to genes if
they directly overlapped or if the regulatory region overlapped with an eQTL for
the gene based on the GTEx database35. If an eQTL was reported for several genes,
overlapping variants were assigned to all of them. We did not take tissue specificity
into account. For selecting variants, we either used the coordinates of the regulatory
features alone, or regulatory features plus the extended exons. We used Eigen, an
aggregate score that combines information from multiple regulatory annotation
tracks36, to weigh variants in all tests that include regulatory variants. In addition
to raw Eigen scores, the authors also proposed EigenPC, a score derived from the
first eigenvector of the correlation matrix of annotations. Both scores were available
as is, or transformed using Phred-scaling, which maps a distribution’s support
to] 0,+∞[, thereby guaranteeing inclusion and relative up-weighting of all variants.
In the regulatory regions plus exon analyses we used both the raw Eigen scores,
shifted by 1 unit to the right, with negative scores set to 0þ ϵ (Supplementary
Table 1: Exon and regulatory Eigen), and the Phred-transformed Eigen and
EigenPC scores (Supplementary Table 1: Exon and regulatory EigenPhred and
EigenPCPhred). This transformation was a technical requirement as MONSTER
could only read weights belonging to ]0,+∞[. In the analyses containing the
regulatory regions only, variants were weighted using the Phred-scaled Eigen scores
(Supplementary Table 1: regulatory only EigenPhred) only.

Finally, we applied a MAF threshold of 0.05, a missingness threshold of 1% and
a Hardy–Weinberg filter using a mid-p adjusted P-value37 threshold of 1.0 × 10−5

to all variants prior to testing. We only performed a test if at least two SNVs passed
the inclusion criteria for a given condition.

Establishing the significance threshold. We calculated αeff ¼ 0:05
N ´ ncond ´M

;where N
is the number of genes tested, ncond is the effective number of inclusion and
weighting criteria tested and M=6 is the number of traits. For ncond, we plotted the
correlation matrix of z-scores for all 10 analyses, and determined that the analyses
using similar region definitions (exonic loss-of-function, exonic, exonic and reg-
ulatory variants) cluster together, reducing the effective number of analyses to 3
(Supplementary Fig. 7). Although N= 18,997 protein-coding genes are available in
GENCODE V25, not all genes were tested in every condition. For example, for
many genes only one variant might pass inclusion criteria in a high-confidence
loss-of-function run, thereby excluding those genes from the analysis. A summary
of the number of genes included in every analysis is presented in Supplementary
Table 5. On average, N= 13,854 genes are included, hence we define study-wide
significance at P= 2.0 × 10−7.

Burden prioritisation and novelty. We applied stringent checks to test the validity
of rare variant burden association signals. Every suggestively associated burden
(arbitrarily defined as P ≤ 5 × 10−5) was conditioned on the genotypes of the

variant included in the burden set with the lowest single-point P-value. If the P-
value dropped more than two orders of magnitude below the suggestive sig-
nificance threshold (i.e., P ≤ 5.0 × 10−3), the burden was excluded from down-
stream analyses. We examined burden signals using the plotburden software
(https://github.com/wtsi-team144/plotburden) to assess variant functionality,
single-point association P-values, LD structure, as well as prior associations in the
region. When a prior association was found in the region, we considered a signal
known when the P-value dropped below P= 1.0 × 10−4 when conditioning on the
genotypes of the existing signal. We examined rare variant burden associations
with suggestive significance (P < 5 × 10−5) across the six traits under investigation,
and do not find evidence of further rare variant signals at established loci.

Replication. The INTERVAL randomised controlled trial is a large-scale study
focusing on healthy blood donors10. Sequencing, variant calling and quality control
was performed for 3762 INTERVAL participants using the same protocol and
pipeline as for the MANOLIS sequences. 38 samples were excluded on the basis of
ethnicity, excessive relatedness (π̂ > 0.125), excess heterozygosity and contamina-
tion. VQSR thresholds of 99 and 90% for SNVs and INDELs, respectively, were
applied to variant calls. Gamma-glutamyltransferase and adiponectin levels were
not available in the INTERVAL replication cohort.

Selection analyses. For the selection analyses we used the haplotype-based iHS
statistic16. We used this statistic because we were mainly interested in recent or
ongoing selection, i.e., selective sweeps where the advantageous allele has not yet
reached a high frequency (>80%), and iHS has been shown to be more powerful
than other commonly used statistics like Tajima’s D38 and XP-EHH39 for detecting
such sweeps16,40. Briefly, the iHS value of an SNV becomes elevated when one of
the alleles of that SNV reside on haplotypes that are longer than expected under
neutrality, given the frequency of the allele. This is considered a signature of
positive selection because positive selection will cause haplotypes carrying an
advantageous allele to increase in frequency faster than if the allele had been
neutral which leaves less time for recombination to shorten them.

To investigate if any of the four genes with study-wide significant burden
association signals have undergone recent or ongoing positive selection, we
calculated the fraction of SNVs with |iHS|>2 for these four genes and assessed if
these fractions were elevated by comparing them to the empirical distribution for
all genes. We focused on the fraction of SNVs with |iHS|>2, because previous
studies have compared different methods of summarising iHS for a genomic region
of interest, and found that the fraction of SNVs |iHS|>2 is often the most powerful
iHS summary for detecting selection16,40.

The primary data used for the selection analyses is the MANOLIS genotype data
described above, which we phased using Beagle v.4.141. We also used the ancestral
allele annotations for each site in hg38 from ENSEMBL, and the recombination
map from UCSC, which was built on hg37 and lifted-over to hg38. From this map,
we excluded 3140 sites to achieve a recombination map with monotonically
increasing cM positions. Linear interpolation was subsequently used to produce cM
positions for all sites not found on the map. For quality control, we combined the
MANOLIS genotype data with genotype data from the 1000 Genomes phase 342.

Because close relatives can complicate and potentially bias analyses of signals of
selection, we removed close relatives within the MANOLIS data after phasing, as
well as one admixed individual. We used the same criteria as in a previous study of
this population4, i.e., we used the --genome option in PLINK 1.9 to estimate PI-
HAT and randomly excluded one individual from each pair of individuals with
π̂>0.2. These exclusions left 810 unrelated individuals from MANOLIS, on which
we based the selection analysis.

We restricted our iHS analysis to known, common SNVs with ancestral allele
annotations. Specifically, we excluded sites: not on the autosomes, with more than
2 alleles, with alleles that were not length 1 (INDEL-like), with MAF < 0.05, without
ancestral allele annotations, with HWE midp-value < 1 × 10−30, not present in 1000
Genomes phase 3 vcf files, or that were outside a mappable region of the hg38
reference genome, defined as a GEM 100-mer score below 0.843. These filtering
steps resulted in 5,126,987 SNVs as input for iHS calculations.

The iHS statistic was calculated with the hapbin program44, using default
parameters. The raw iHS statistic is sensitive to allele frequency, so SNVs were
subsequently binned by derived allele count (82 equally-spaced bins) and the iHS
statistic was normalised within each bin to have a mean of zero and a standard
deviation of one, as suggested in16. Finally, we examine the absolute value of the
normalised iHS statistic to capture selection signals associated with both derived
and ancestral alleles. Due to edge effects at chromosome ends and other gaps, we
examine iHS values for 5,116,861 SNVs (99.8% of input sites).

For each gene, we considered four distinct ways to define the genomic region
representing the gene: (1) sites within exons, (2) sites within exons extended by
50 bp or in regulatory elements, (3) sites within the region spanned by connecting
all exons, and (4) sites within the region spanned by connecting all exons extended
by 50 bp and regulatory elements. For each gene and each of the four genic region
definitions, we extracted SNVs with an iHS value and calculated the fraction of
SNVs with normalised |iHS| above 2. When interpreting our results, we mainly
focused on the results for the most inclusive definition, definition 4, as selection
signatures tend to span fairly large genomic regions, but included the other
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definitions to be able to assess if this choice of definition markedly affected our
results.

For each lead gene with a rare variant study-wide significant burden signal
(APOC3, UGT1A9, ADIPOQ, and FAM189B), we compared its fraction of SNVs
with |iHS|>2 to all other genes with at least 1 iHS value-bearing SNV, using each of
the four different gene region definitions. Each comparison was quantified by the
percentile of genes with a higher fraction of SNVs with |iHS|>2. FAM189B was the
only of the four burden genes with a fraction |iHS|>2 above zero. For this gene, we
also performed a comparison to the subset of genes with a similar number of SNVs
with iHS values as FAM189B (defined as +/− 10% of the number of SNVs with
iHS in FAM189B) to ensure the varying number of SNVs in the genes we compared
FAM189B to did not drastically affect the percentiles. Note that with the gene
definitions used some SNVs will be included in several genes and thus the data
points in the empirical distribution used for comparison are not entirely
independent.

FST between two populations is a measure of population differentiation and is
expected to increase in a region harbouring an allele which has been under positive
selection mainly in one of the two populations.

To further investigate the FAM189B gene we calculated FST between the
MANOLIS cohort and the European 1000 genomes CEU population for this gene
and compared it to that of all other genes. The comparison was performed like for
the iHS values, i.e., using quantiles and by performing several different
comparisons to check for robustness of the results. For this analysis, we used the
same genetic data from MANOLIS as for the iHS analyses combined with data
from the 1000 genomes CEU population sample, except we did not filter away
SNVs with MAF < 0.05, without ancestral allele annotations or with HWE midp-
value < 1 × 10−30. Following published recommendations45, all FST estimates were
performed using the Hudson estimator and per SNP estimates were combined
using the ratio of the average numerator and the average denominator (also
referred to as weighted mean FST). However, we note that similar results were
obtained using the Weir and Cockerham FST estimator46.

Code availability. MUMMY, the script used to run burden tests genome wide
using MONSTER, is available at https://github.com/wtsi-team144/burden_testing.
The plotburden script, which builds interactive visualisations of burden signals, is
available at https://github.com/wtsi-team144/plotburden.

Data availability
Sequencing data are available at the European Genome-Phenome Archive under
accession numbers EGAS00001001207 for MANOLIS, EGAS00001000988 for
TEENAGE, and EGAS00001001355, EGAS00001002461, and EGAS00001002787
for INTERVAL.
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Supplementary Tables 
 
Supplementary Table 1 
Region definition, variant selection and weighting systems used to define testing conditions 
for burden analysis. 
 

Burden analysis 
condition 

Weighting system Criterion Exons Regulatory 
Regions 

LOFTEE HC 
 

none Predicted LoF by 
LOFTEE with high 

confidence 

yes no 

LOFTEE LC none Predicted LoF by 
LOFTEE, both high 

and low confidence 

yes no 

Exon severe none Ensembl most severe 
consequence more 

severe than 
missense 

yes no 

Exon CADD CADD none yes no 

Exon CADD median CADD CADD>5.851 yes no 

Exon+50 CADD CADD none yes  
  extended by 

50bp 

no 

Exon+Regulatory 
Eigen 

Eigen 
(raw score + 1) 

Eigen>0 yes 
extended by 

50bp 

yes 

Exon+Regulatory 
EigenPhred 

Phred-transformed 
Eigen 

none yes   
extended by 

50bp 

yes 

Exon+Regulatory 
EigenPCPhred 

Phred-transformed 
EigenPC 

 

none yes    
extended by 

50bp 

yes 

Regulatory only 
EigenPhred 

Phred-transformed 
Eigen 

none no yes 
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Supplementary Table 2 
Burden test P-values for adiponectin levels in the ADIPOQ gene, conditioned on known 
adiponectin and diabetes-associated variants. 
 
rsID position (GRCh38)  

on chromosome 3 
previous association conditioned 

burden P-value 

rs16861329 186948673 type 2 diabetes 4.76E-08 

rs17366568 186852664 adiponectin levels 3.79E-08 

rs182052 186842993 adiponectin levels 4.79E-08 

rs822387 186838248 adiponectin levels, with and 
without BMI adjustment 

2.56E-07 

rs864265 186836503 adiponectin levels 5.56E-08 

rs1648707 186833922 adiponectin levels 4.68E-08 

rs10937273 186831906 adiponectin levels 5.24E-08 

rs6810075 186830776 adiponectin levels 4.77E-08 

rs266717 186812695 adiponectin levels 4.46E-08 

rs266719 186783859 adiponectin levels 2.40E-07 

rs822354 186762417 adiponectin levels 6.57E-08 

rs74577862 186843903 adiponectin levels 1.2E-07 

rs201813484 186841095 adiponectin levels 3.1E-07 
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Supplementary Table 3 
Fraction of SNVs with |iHS|>2 in APOC3, UGT1A9, ADIPOQ and FAM189B compared to all 
other genes. For each gene its fraction of SNVs with |iHS|>2 is given in parenthesis and the 
percentile in the empirical distribution of these fractions for all genes using four different 
definitions of the genomic region representing the genes. We mainly considered the most 
inclusive definition (the bottommost), but included the others for comparison to assess 
robustness to this definition. For FAM189B the percentile is also given for the subset of 
genes with a similar gene length, defined as the number of SNVs with iHS values (rightmost 
column). A percentile of 80% means that 80% of values are less than or equal to the value.  
 

Definition of burden 
testing condition  

APOC3 
compared to all 
genes 

UGT1A9 
compared to all 
genes 

ADIPOQ 
compared to all 
genes 

FAM189B 
compared to all 
genes 
  

FAM189B compared 
only to genes with 
within +/- 10% of # 
SNVs in FAM189B 

Exons only 41.0th percentile 
(0.00) 

41.0th percentile 
(0.00) 

41.0th percentile 
(0.00) 

98.3th percentile 
(0.67) 

97.4th percentile 
(0.67) 

Exons extended by 50bp 
and regulatory elements 

28.1th percentile 
(0.00) 

28.1th percentile 
(0.00) 

28.1th percentile 
(0.00) 

97.4th percentile 
(0.42) 

95.7th percentile 
(0.42) 
 

Region spanning all 
exons 

15.3th percentile 
(0.00) 

15.3th percentile 
(0.00) 

15.3th percentile 
(0.00) 

96.7th percentile 
(0.32) 

94.6th percentile 
(0.32) 

Region spanning all 
exons extended by 50bp 
and regulatory elements 

27.5th percentile 
(0.00) 

27.5th percentile 
(0.00) 

27.5th percentile 
(0.00) 

95.6th percentile 
(0.33) 

93.9th percentile 
(0.33) 
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Supplementary Table 4 
Weighted mean FST in FAM189B compared to all other genes. The weighted mean  FST for 
SNVs within FAM189B is given in parenthesis and the percentile of this value in the 
empirical distribution for all genes using four different definitions of the genomic region 
representing the genes (left column). In the right column, FAM189B is only compared to the 
subset of genes with a similar gene length, defined as the number of SNVs with FST values 
(rightmost column) within 10%.  
 

Definition of gene  FAM189B 
compared to all 
genes 
  

FAM189B compared only 
to genes with within +/- 
10% of # SNVs in 
FAM189B 

Exons only 96.3th percentile 
(0.036) 

96.8th percentile 
(0.036) 

Exons extended by 50 bp 
and regulatory elements 

99.1th percentile 
(0.050) 

99.7th percentile 
(0.050) 
 

Region spanning all exons 98.0th percentile 
(0.042) 

97.5th percentile 
(0.042) 

Region spanning all exons 
extended by 50 bp and 
regulatory elements 

99.0th percentile 
(0.042) 

100th percentile 
(0.045) 
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Supplementary Table 5 
Number of genes with at least 2 SNVs for the different burden analysis conditions. 

Analysis condition Number of 
genes 

GENCODE V25 (all protein-coding, not tested) 18,997 

LOFTEE HC 85 

LOFTEE LC 1,727 

Exon severe 7,660 

Exon CADD 18,428 

Exon CADD median 18,138 

Exon+50 CADD 18,551 

Exon+Regulatory Eigen 18,961 

Exon+Regulatory EigenPhred 18,660 

Exon+Regulatory EigenPCPhred 18,722 

Regulatory only EigenPhred 17,607 
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Supplementary Table 6 
Broad functional categories are defined by grouping together several variant categories as 
defined by Ensembl VEP. 
 

Attributed category Ensembl VEP functional class 
LoF (high) (See Supplementary Figure 4)  
LoF (low) (See Supplementary Figure 4)  
severe start_lost 
 stop_gained 
 stop_lost 
 frameshift_variant 
 transcript_ablation 
intergenic intergenic_variant 
Intronic intron_variant 
UTR 3_prime_UTR_variant 

5_prime_UTR_variant 
Up/Down stream upstream_gene_variant 

downstream_gene_variant 
splice variant 
 

splice_donor_variant 
splice_acceptor_variant 
splice_region_variant 

synonymous synonymous_variant 
other coding 
 

coding_sequence_variant 
incomplete_terminal_codon_variant 
initiator_codon_variant 
missense_variant 
stop_retained_variant 
inframe_deletion 

 inframe_insertion 
other noncoding 
 

nc_transcript_variant 
non_coding_transcript_exon_variant 
non_coding_exon_variant 
mature_miRNA_variant 

 non_coding_transcript _variant 
regulatory 
 

regulatory_region_variant 
TF_binding_site_variant 
TFBS_ablation 
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Supplementary Figures 
 
Supplementary Figure 1 
Sequencing depth distribution of 1,457 MANOLIS samples. The box indicates quartiles and 
the centre line is the median. Whiskers extend to 1.5x the interquartile range. The mean is 
22.5x and the median is 21.9x. Sequencing depths range from 14.7x to 40x. 
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Supplementary Figure 2 
True positive rate for NA12878 at various sequencing depths. Compared to Genome in a 
Bottle 0.2 for SNVs and INDELs. Genome-wide, a single downsampling replicate was 
performed for each depth. 
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Supplementary Figure 3 
Unique and shared SNVs between 30x and 22.5x depth whole genome sequencing. 
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Supplementary Figure 4 
Ensembl most severe consequence for loss-of-function variants. Breakdown is shown for 
variants predicted as loss-of-function with (a) high-confidence (HC) and (b) low-confidence 
(LC) by LOFTEE, along with genome-wide counts per Ensembl predicted consequence. 
 

 
 
  

a. 

b. 
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b. 

c. 

Supplementary Figure 5 
Distributions of rare variant counts compared to cosmopolitan populations. (a) singleton 
and (b) doubleton counts in 1,000 draws of 100 MANOLIS samples (blue histograms). The 
vertical orange line indicates the observed count in 100 TEENAGE samples downsampled to 
22.5x. Red lines are fitted normal distributions. (c) rare variant counts in MANOLIS (blue 
line) and INTERVAL (boxplots) in 500 draws of 1,482 samples from INTERVAL. Boxes extend 
from the 1st to the 3rd quartiles, whiskers extend to 1.5 times the interquartile range. Centre 
lines are the median. 
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Supplementary Figure 6 
 Frequencies and functional annotations of all novel variants in MANOLIS. (a) depicts 
frequency bins and (b) variant consequences. Novelty is established by comparing variant 
location and alleles to Ensembl VEP annotation as well as gnomAD genomic variants lifted-
over to build 38. 
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Supplementary Figure 7 
Correlogram of z-scores arising from all evaluated burden testing scenarios. Quantities 
reported are Pearson’s correlations of z-transformed P-values across all gene-trait pairs for 
all six tested traits. For each cell, P-values of all gene-trait pairs that were tested in both 
conditions are included. Clusters were generated using hierarchical clustering. The exon LoF 
HC scenario is not included in the correlogram due to the low number of genes containing 
more than one high-confidence loss-of-function variant (n=85).  
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Supplementary Figure 8 
Evidence for association for the 20 study-wide significant trait-gene pairs across all tested 
conditions. P-values are on the -log10 scale. Grey cells indicate that an insufficient number 
of variants passed the inclusion threshold. Dark orange denotes study-wide significance and 
turquoise green denotes suggestive association.  
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Supplementary Figure 9 
Comparison of kinship coefficients produced by different methods. KING and EMMAX 
estimates on the y axis are compared to those produced by GEMMA24 on the x axis. All 
kinship coefficients are calculated using the same dataset (MAF>5%, missingness<1%, LD-
pruned). IBS coefficients (KING Related, EMMAX IBS and Plink) are both higher on average 
and less sensitive to increased relatedness than their Balding-Nichols counterparts 
(GEMMA, EMMAX BN and KING homogenous). Red lines represent OLS regression slopes. 
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Supplementary Figure 10 
QQ-plots for all tested conditions across all analysed traits. The lambda values are 
displayed next to the condition name in the legend. lambda is calculated as 
 𝜆"# =

%&'()*(,-./01(2))
,-./01(4.6)
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